Exercises for Algebraic Number TheoryOliver LorscheidSeries 7Instituto Nacional de Matemática Pura e AplicadaThis list is not to hand in!

*Exercise 1.

Show that

$$\begin{array}{cccc} \mathbb{Z}[[T]] & \longrightarrow & \mathbb{Z}_p \\ \sum_{i \ge 0} a_i T^i & \longmapsto & \sum_{i \ge 0} a_i p^i \end{array}$$

with $a_i \in \{0, \ldots, p-1\}$ is a well-defined homomorphism of rings that is surjective and has kernel (T-p).

*Exercise 2.

The *p*-adic integer $\sum_{i>0} a_i p^i$ is in \mathbb{Z}_p^{\times} if and only if $a_0 \neq 0$.

*Exercise 3.

 \mathbb{Q}_p and \mathbb{Q}_q are isomorphic (as fields) for two prime numbers p and q if and only if p = q. *Hint:* Make use of the different splitting behaviours of polynomials in $\mathbb{Z}[T]$ modulo p and q, respectively.

*Exercise 4.

Determine all places of $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{5})$.

*Exercise 5.

Determine all archimedean places of $\mathbb{Q}(\zeta_n)$ and $\mathbb{Q}(\sqrt[n]{2})$ where $n \ge 1$ and ζ_n is a primitive *n*-th root of unity.

*Exercise 6.

Let L/K be a finite separable extension, v a discrete valuation of K with valuation ring $A = \mathcal{O}_v$ and B the integral closure of A in L. Let \hat{v} be the extension of v to the completion K_v of K at v, and $\mathcal{O}_{\hat{v}}$ its valuation ring. Show that

$$B \otimes_A \mathcal{O}_{\hat{v}} = \prod_{w|v} \mathcal{O}_{\hat{w}}$$

where w|v varies over all extensions w of v to L and $\mathcal{O}_{\hat{w}}$ is the valuation ring of the extension \hat{w} of w to the completion L_w of L at w.

*Exercise 7.

What is the relation of Proposition 1 in section 2.6 to Proposition 1 in section 1.7 of the lecture?

*Exercise 8.

Let K be a field of positive characteristic p.

- 1. Show that $K_0((T))/K_0(T)$ is not an algebraic extension.
- 2. Let $X \in K_0((T))$ be transcendental over $K_0(T)$, $K = K_0(T, X^p)$ and $L = K_0(T, X)$. Show that L/K has degree p and that the fundamental identity does not hold for the T-adic valuation v_T of K.
- *Hint:* Use that v_T extends uniquely to $K_0((T))$.

The starred exercises are not to hand in.