Exercise 1.

Describe all ring homomorphisms $\mathbb{R}[T] \to \mathbb{R}[T]$. Which of them are isomorphisms?

Exercise 2.

- 1. Let A be a ring and $\{I_i\}_{i\in I}$ be a family of ideals in A. Show that the intersection $\bigcap_{i\in I} I_i$ is an ideal of A. For finite I, show that the product $\prod_{i\in I} I_i = (\{\prod a_i | a_i \in I_i\})$ is an ideal of A that is contained in $\bigcap_{i\in I} I_i$. Under which assumption is $\prod I_i = \bigcap I_i$?
- 2. Let $f : A \to B$ be a ring homomorphism and I an ideal of B. Show that $f^{-1}(I)$ is an ideal of A. Show that $f^{-1}(I)$ is prime if I is prime. Is $f^{-1}(I)$ maximal if I is maximal? Is the image f(J) of an ideal J of A an ideal of B?

Exercise 3.

- 1. Describe all ideals of \mathbb{Z} . Which of them are principal ideals, which of them are prime and which of them are maximal?
- 2. Let $f \in \mathbb{R}[T]$ be of degree ≤ 2 . When is (f) a prime ideal, when is it a maximal ideal? When is the quotient ring isomorphic to \mathbb{R} ? When is it isomorphic to \mathbb{C} ?

Exercise 4.

Let A be a ring and A^{\times} its unit group.

1. Show that the map

is well-defined and turns A^{\times} into an abelian group.

- 2. Let $f : A \to B$ be a ring homomorphism. Show that $f(A^{\times}) \subset B^{\times}$ and that the restriction $f|_{A^{\times}} : (A^{\times}, \cdot) \to (B^{\times}, \cdot)$ of f is a group homomorphism.
- 3. Show that the map $A^{\times} \times A \to A$, defined by $(a, b) \mapsto ab$ is a group action of (A^{\times}, \cdot) on A.
- 4. Show that (a) = A if and only if $a \in A^{\times}$.
- 5. Let A be an integral domain. Consider the map $\Phi : A \to \{\text{ideals of } A\}$ that sends a to the principal ideal (a) of A. Show that $\Phi(a) = \Phi(b)$ if and only if a and b are contained in the same orbit of the action of A^{\times} on A.

Exercise 5 (Bonus exercise).

Show that the ring \mathbb{Z} satisfies the following universal property: for every ring A, there is a unique ring homomorphism $f : \mathbb{Z} \to A$. Use this and the universal property of the quotient map $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ to show that for a ring A whose underlying additive group (A, +)is isomorphic to $(\mathbb{Z}/n\mathbb{Z}, +)$ (as a group), there is a unique ring isomorphism $\mathbb{Z}/n\mathbb{Z} \to A$. **Remark:** We say that \mathbb{Z} is an *initial object in the category of rings*.

Exercise 6 (Bonus exercise).

Let A be a ring and I an ideal of A. Show that I is contained in a maximal ideal of A. **Hint:** This is a consequence of Zorn's lemma.