Exercise 1.

Find an example of a Noetherian ring that has infinite dimension, and prove this. Hint: Atiyah and Macdonald's book contains such an example (exercise 4 in chapter 11).

Exercise 2.

Let A be a ring. Show that $\dim A + 1 \leq \dim A[T] \leq 2 \dim A + 1$.

Hint: See exercise 6 of chapter 11 in Atiyah and Macdonald's book for hints.

Exercise 3.

Let A be a ring, I an ideal of A and M an A-module. Let $\alpha : A \to \widehat{A}$ and $\beta : M \to \widehat{M}$ be the canonical maps to the I-adic completions of A and M, respectively.

- 1. Show that M is Hausdorff in the *I*-adic topology if and only if $\bigcap_{n\geq 0} I^n M = \{0\}$, which is the case if and only if β is injective.
- 2. Define $\widehat{I} = \{ (a_i) \in \widehat{A} \mid a_1 \equiv 0 \mod I \}$. Show that \widehat{I} equals the topological closure of $\alpha(I)$ in \widehat{A} and that \widehat{I} is an ideal of \widehat{A} .
- 3. Show that β induces isomorphisms $M/I^n \cdot M \to \widehat{M}/(\widehat{I})^n \cdot \widehat{M}$ of A-modules.
- 4. Show that the \widehat{I} -adic topology of \widehat{M} is Hausdorff and that the \widehat{I} -adic completion $\widehat{\beta}: \widehat{M} \to \widehat{\widehat{M}}$ is an isomorphism of \widehat{A} -modules.

Exercise 4.

Let A be a ring and I an ideal of A such that A is Hausdorff with respect to the I-adic topology. Let q be a real number in (0, 1).

- 1. Show that the function $d(a,b) = \inf\{q^n | a b \in I^n\}$ is a metric on A.
- 2. Let \widehat{A}^d be the completion of A as a metric space w.r.t. d. Exhibit a bijection $f: \widehat{A} \to \widehat{A}^d$ that is a homeomorphism where we consider \widehat{A} with the \widehat{I} -adic topology and that is an isomorphism of rings where we consider \widehat{A}^d with the componentwise addition and multiplication of Cauchy sequences.

Exercise 5.

Let A be a Noetherian ring, I an ideal of A and S = 1 + I.

- 1. Show that S is a multiplicative subset of A and that the kernel of the localization $\iota: A \to S^{-1}A$ equals the kernel of the completion $\alpha: A \to \widehat{A}$.
- 2. Show that $\alpha(a)$ is invertible in \widehat{A} for every $a \in S$.
- 3. Conclude that $\alpha: A \to \widehat{A}$ extends to an injective ring homomorphism $S^{-1}A \to \widehat{A}$.