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What is a hyperring?

A hyperring is a commutative monoid (R, ·, 1) together with a
hyperaddition, which is a map

� : R × R −→ P(R) (= power set of R)

that satisfies for all a, b ∈ R ,
1. a � b 6= ∅ (non-empty sums)
2. a � b = b � a (commutative)
3. ∃0 ∈ R such that 0� a = {a} (additive unit)
4. ∃!(−a) ∈ R with 0 ∈ a � (−a) (additive inverses)
5. . . . (associativity)
6. . . . (distributivity)



What is a hyperfield?

A hyperfield is a hyperring R whose unit group

R× = { a ∈ R | ab = 1 for some b ∈ R }

equals R − {0}.

Examples:
I Viro’s tropical hyperfield T ...
I A field K becomes a hyperfield w.r.t. a � b := {a + b}.
I Krasner’s hyperfield K = {0, 1} with

· 0 1
0 0 0
1 0 1

and
� 0 1
0 {0} {1}
1 {1} {0, 1}



What is a tropical variety?

Let
T[T1, . . . ,Tn] =

{∑
finite

aeT e
∣∣∣ ae ∈ T

}
be the set of tropical polynomials∑

aeT e =
∑

a(e1,...,en)T
e1
1 · · ·T

en
n

Note: T[T1, . . . ,Tn] carries the structure of a semiring w.r.t. the
usual multiplication and the tropical addition∑

aeT e +
∑

beT e =
∑

max{ae + be}T e.

It is, however, not extending the hyperaddition of T in a natural
way.



What is a tropical variety?

Let f =
∑

aeT e be a tropical polynomial. For a point
x = (x1, . . . , xn) ∈ Tn, define

f (x) =
∑

aexe =
∑

a(e1,...,en)x
e1
1 · · · x

en
n .

The corner locus of f is the subset

V (f ) =
{
x = (x1, . . . , xn) ∈ Tn

∣∣∣ 0 ∈� aexe︸ ︷︷ ︸
i.e. the maximum is assumed twice

}
.

If I is an ideal of T[T1, . . . ,Tn], which is a subset with 0 ∈ I ,
I + I = I and I · T[T1, . . . ,Tn] = I , then define

V (I ) =
⋂
f ∈I

V (f ).



Tropicalizations of classical varieties
Let K be an algebraically closed field and v : K → T (= R≥0) a
non-archimedean absolute value, aka, a morphism of hyperfields.
Let X be a closed subvariety of Kn and I ⊂ K [T1, . . . ,Tn] the
vanishing ideal. We define

Trop(f ) =
∑

v(ae)T e ∈ T[T1, . . . ,Tn]

for f =
∑

aeT e in K [T1, . . . ,Tn],

Trop(I ) =
{
Trop(f )

∣∣∣ f ∈ I
}

and Trop(X ) = V
(
Trop(I )

)
.

Theorem: The map vn : Kn → Tn maps X to Trop(X ).

Proof: If v(a + b) < max
{
v(a), v(b)

}
, then v(a) = v(b). Thus∑

aexe = 0 implies 0 ∈ �v(ae)vn(x)e.



Tropical linear spaces

Let I be an ideal of T[T1, . . . ,Tn] that is generated by

I1 =
{
f ∈ I homogeneous of degree 1

}
.

Problem:
In general, the corner locus V (I ) is not balanced.

Solution:
Impose matroid conditions.



What is a matroid?

Let K be a field. A K -matroid of rank r with base set
n = {1, . . . , n} is a surjective linear map π : Kn →W to an
r -dimensional K -vector space W .
A K -matroid is determined by several cryptomorphic descriptions:
I Bases: {B ⊂ K∨n |π(B) ⊂W is a basis }

where K∨n = {multiples of standard basis vectors ei ∈ Kn}.
I Linear dependent and independent sets: similar to bases.
I Circuits: nonzero vectors in V = ker π with a minimal set of

nonzero coefficients.
I Rank functions: r(S) = dim(π(〈S〉) for S ⊂ K∨n.
I Closure operators: [S ] = π−1(π(〈S〉)) ∩ K∨n for S ⊂ K∨n.
I Dual pairs: embed W as orthogonal complement of V = ker π.
I Plücker coordinates: [∆I ] ∈ Gr(r , n)K where I runs through

the set
(n
r

)
of r -subsets of n = {1, . . . , n}.



What is a matroid?
Let

(n
r

)
=
{
r -subsets of n =

{
1, . . . , n}

}
.

A Grassmann-Plücker function in K is a map

δ :

(
n
r

)
−→ K,

that satisfies
I δ is not constant zero, (nonzero)
I

0 ∈
n

�
k=0

(−1)k δ(I ∪ {jk}) δ(J − {jk})

for all (r − 1)-subsets I and (r + 1)-subsets J = {j0, . . . , jr} of
n, where we use the convention δ(I ) = 0. (Plücker relations)

A matroid (or K-matroid) is a class in{
Grassmann-Plücker functions in K

}
/ K×.



What is a valuated matroid?
Let

(n
r

)
=
{
r -subsets of n =

{
1, . . . , n}

}
.

A Grassmann-Plücker function in T is a map

δ :

(
n
r

)
−→ T,

that satisfies
I δ is not constant zero, (nonzero)
I

0 ∈
n

�
k=0

(−1)k δ(I ∪ {jk}) δ(J − {jk})

for all (r − 1)-subsets I and (r + 1)-subsets J = {j0, . . . , jr} of
n, where we use the convention δ(I ) = 0. (Plücker relations)

A valuated matroid (or T-matroid) is a class in{
Grassmann-Plücker functions in T

}
/T×.



Back to tropical linear spaces

A tropical linear space in Tn is the corner locus V (I ) of an ideal
I of T[T1, . . . ,Tn]

I that is generated by its subset I1 of linear polynomials and
I that is a valuated matroid, i.e. the support-minimal nonzero

f ∈ I1 form the circuit set of a valuated matroid.

Theorem:

(1) Let K be an algebraically closed field with non-archimedean
absolute value v : K → T and X ⊂ Kn a linear subspace. Then
Trop(X ) is a tropical linear space in Tn.

(2) Every tropical linear space is balanced.



Further developments

Baker-Norine ’06: Riemann-Roch theorem for tropical curves.

This theory has a purely combinatorial formulation and proof.

Problem: Find a cohomological definition of h0 and h1 and an
algebraic proof.

Jeff and Noah Giansiracusa ’13: Tropicalizations as T-schemes,
using F1-geometry.

Maclagan-Rincón ’14 & ’16: (1) The tropicalization of a
classical ideal is a tropical ideal, i.e. it satisfies matroid conditions.

(2) The T-scheme associated with a tropical ideal is balanced.

L. ’15: Generalization of G2 using blue schemes, e.g. including a
scheme theoretic version for Thuillier skeleta of Berkovich spaces.

Problem: Generalize tropical ideals to this more general setting.

Need: Matroids for more general objects than fields, K, T, . . .



Generalizations of matroid theory

Dress ’86, Dress-Wenzel ’91, ’92, . . . : Matroids for fuzzy rings,
including cryptomorphic descriptions as
1. bases,
2. circuits, and
3. Grassmann-Plücker functions.



Interlude: what is a fuzzy ring?

A fuzzy ring is a possibly non-distributive commutative semiring R
with 0 and 1 together with a proper ideal I (i.e. 0 ∈ I , I + I ⊂ I ,
and I · R ⊂ I ) that satisfies:
I ∀a ∈ R×∃!b ∈ R× s.t. a + b ∈ I (additive inverses of units)
I . . . (weak forms of distributivity)
I . . . (compatibility of distributivity and additive inverses)



Generalizations of matroid theory

Dress ’86, Dress-Wenzel ’91, ’92, . . . : Matroids for fuzzy rings,
including cryptomorphic descriptions as
1. bases,
2. circuits, and
3. Grassmann-Plücker functions.

Important special class: valuated matroids.

Baker-Bowler ’16: Matroids for hyperfields, including
cryptomorphic descriptions as
1. circuits,
2. dual pairs, and
3. Grassmann-Plücker functions.

Giansiracusa-Jun-L. 16’: The category of hyperfields occurs
naturally as a full subcategory of the category of fuzzy rings,
identifying the different notions of matroids.



From hyperfields to fuzzy rings to ordered blueprints

Let Hyp be the category of hyperfields.
Let Fuzz be the category of fuzzy rings.

Let OBlpr be the category of ordered blueprints.

Hyp
fully faithful // Fuzz

K � // (R, I )

where
I R = P(K )− ∅,
I I = {A ⊂ K | 0 ∈ A },
I A · B = { ab | a ∈ A, b ∈ B },
I A + B =

⋃
{ a � b | a ∈ A, b ∈ B }.



Interlude: what is an ordered blueprint?

A semiring is a commutative semiring with 0 and 1.

An ordered semiring is a semiring R together with a partial order
≤ that satisfies for all a, b, c , d ∈ R that
I a ≤ b and c ≤ d implies a + c ≤ b + d , (additive)
I a ≤ b and c ≤ d implies ac ≤ bd . (multiplicative)

An (ordered) blueprint B is an (ordered) semiring B+ together
with a multiplicative subset B• that contains 0 and 1 and that
generates B+ as a semiring.

A morphism of ordered blueprints is a multiplicative and
additive map f : B+

1 → B+
2 that preserves 0, 1, the partial order

and the multiplicative subsets.



From hyperfields to fuzzy rings to ordered blueprints

Let Hyp be the category of hyperfields.
Let Fuzz be the category of fuzzy rings.
Let OBlpr be the category of ordered blueprints.

Hyp
fully faithful // Fuzz

fully faithful // OBlpr

(R, I ) � // B = (B+,B•,≤)

where
I B+ = N[R×],
I B• = R× ∪ {0}, and
I ≤ is generated by

0 ≤
∑

in N[R×]

ai where ai ∈ R× such that
∑
in R

ai ∈ I .



From hyperfields to fuzzy rings to ordered blueprints

Let Hyp be the category of hyperfields.
Let Fuzz be the category of fuzzy rings.
Let OBlpr be the category of ordered blueprints.

Hyp
fully faithful // Fuzz

fully faithful // OBlpr

uu{
fuzzy rings (N[G ],I )
where G is a group

}'

OO



Geometry for ordered blueprints

The spectrum of an ordered blueprint B is the set X of all
prime ideals of B endowed with its Zariski topology and its
structure sheaf OX in OBlpr.

An ordered blue scheme is a topological space X together with a
sheaf OX that is locally isomorphic to the spectra of ordered
blueprints.

Remark: In analogy to usual algebraic geometry, there is a
Proj-construction. In particular, we can define the projective
n-space Pn

B = ProjB[T0, . . . ,Tn] over an ordered blueprint B, as
well as closed subvarieties of Pn

B .



The moduli space of matroids

Let B = F±1 be the ordered blueprint with
I B+ = N · 1⊕ N · (−1),
I B• = {0, 1,−1}, and
I ≤ generated by 0 ≤ 1 + (−1).

Remark: F±1 is an initial object in the image of Fuzz→ OBlpr.

Let Br ,n be the ordered blueprint with
I B+

r ,n = N
[
ε∆I

∣∣ ε ∈ {±1}, I ∈ (nr) ],
I B•r ,n = {0} ∪

{
ε∆I

∣∣ ε ∈ {±1}, I ∈ (nr) }, and
I ≤ generated by

0 ≤
n∑

k=0

(−1)k ∆I∪{jk} ∆J−{jk}

for (r − 1)-subsets I and (r + 1)-subsets J = {j0, . . . , jr} of n.



The moduli space of matroids

Remark: Then Br ,n is a graded F±1 -algebra and
Mat(r , n) = ProjBr ,n an ordered blue F±1 -scheme.

Fact: Let K be a hyperfield or fuzzy ring and B the associated
ordered blueprint. Then the pullback of Plücker coordinates defines
a bijection

Mat(r , n)(B)︸ ︷︷ ︸
B-rational points of Mat(r ,n)

−→
{
matroids over K

}
.

Wishful thinking: Mat(r , n) should be the moduli space of matroids
(on n of rank r).

Doubt: What about the universal family?



Families of matroids

An ordered blueprint B is with weak inverses if for all a ∈ B•

there is a unique (−a) ∈ B• such that 0 ≤ a + (−a).

An ordered blue scheme is with weak inverses if the values of its
structure sheaf are blueprints with weak inverses.

Let X be an ordered blue scheme with weak inverses and L a line
bundle on X . A Grassmann-Plücker function in L (on n of
rank r) is a map

δ :

(
n
r

)
−→ Γ(X ,L)

such that
{
δ(I )

∣∣ I ∈ M(r , n)
}
generate L and such that

0 ≤
n∑

k=0

(−1)kδ(I ∪ {jk})δ(J − {jk}) in Γ(X ,L⊗2)

for all (r − 1)-subsets I and (r + 1)-subsets J of n.



Families of matroids

There is a natural action of Aut(L) on the set of
Grassmann-Plücker functions δ : M(r , n)→ Γ(X ,L). An orbit of
this action is called a Grassmann-Plücker class in L (on n of
rank r).

A family of matroids over X (on n of rank r) is a class [L] in
PicX together with a Grassmann-Plücker class[
δ : M(r , n)→ Γ(X ,L)

]
in L.

Fact: If X = SpecB for an ordered blueprint B associated with a
fuzzy ring R , then a family of matroids over B is nothing else than
a matroid over R .



The moduli space of matroids

Theorem: Mat(r , n) is the fine moduli space of families of
matroids over ordered blue schemes with weak inverses, and its
universal family is the family of matroids given by the class of O(1)
and the class of

δ :
(n
r

)
−→ Γ

(
Mat(r , n),O(1)

)
.

I 7−→ ∆I

In particular, there is a natural bijection

{families of matroids over X} −→ Hom
(
X ,Mat(r , n)

)
for every ordered blue scheme X with weak inverses.


