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Theorem (Tutte ’58)
A matroid is regular if and only if it is binary and orientable.



Part 1: Pastures



Definition

A pasture is a pair F = (F×,NF ) of an abelian group F× (the unit
group) and a subset NF (the nullset) of the group semiring

N[F×] =

{ ∑
a∈F×

na · a
∣∣∣∣ na ∈ N, na = 0 for almost all a

}
that satisfies that
1. 0 ∈ NF ;
2. NF + NF ⊂ NF ;
3. NF · F× ⊂ NF ;
4. there is a unique b ∈ F× for every a ∈ F× such that

a + b ∈ NF (the weak inverse of a).
The underlying set of F is the subset F× ∪ {0} of N[F×].

We denote the weak inverse of 1 by ε. We have ε2 = 1, and b ∈ F
is the weak inverse of a ∈ F if and only if b = εa.



Examples

1. A field k can be realized as the pasture (k×,Nk) with

Nk =
{ ∑

na · a ∈ N[k×]
∣∣∣ ∑ na · a = 0 as elements of k

}
.

Note that the underlying set of (k×,Nk) is k itself.
For instance, F2 = ({1},NF2) with NF2 = {n · 1|n ∈ N even}.

2. The Krasner hyperfield is the pasture K =
(
{1},NK

)
with

NK = {n · 1|n 6= 1}. Note that ε = 1 and K = {0, 1} (as sets).

3. The sign hyperfield is the pasture S =
(
{1, ε},NS

)
with

NS = {n11 + nεε|n1 = nε = 0 or n1 6= 0 6= nε}.

4. The regular partial field is the pasture F±1 =
(
{1, ε},NF±

1

)
with NF±

1
=
{
n11 + nεε|n1 = nε

}
.



Morphisms

A morphism of pastures is a map f : F1 → F2 between pastures
F1 and F2 such that

I f (0) = 0 and f (1) = 1;
I f (a · b) = f (a) · f (b);
I
∑

naa ∈ NF1 implies that
∑

naf (a) ∈ NF2 .

Example
1. sign : R→ S.
2. For every pasture F , there are a unique morphism

tF : F −→ K (the terminal map)

given by tF (a) = 1 for all a 6= 0, and a unique morphism

iF : F±1 −→ F

given by iF (0) = 0, iF (1) = 1 and iF (ε) = ε.



Part 2: Matroids



k-matroids

For the rest of the talk, let 0 ≤ r ≤ n be fixed integers and
E = {1, . . . , n}. Let k be a field.

Definition
A k-matroid (on E of rank r) is an r -dimensional subspace L of
kn = {maps E → k}.

Cryptomorphic description
A k-matroid is the same as a point of the Grassmannian
Gr(r , n)(k), which is a subset of the projective space

PN(k) =
{

[∆I ]
∣∣∣ I ∈ (Er )}

where N =
(n
r

)
− 1 and

(E
r

)
is the collection of all r -subsets of E .



k-matroids

In other words:
A k-matroid is a k×-class [∆] of a Grassmann-Plücker function,
which is a nonzero map

∆ :
(E
r

)
−→ k

that satisfies the Plücker relations

r+1∑
k=1

(−1)k∆I∪{jk}∆J−{jk} = 0

for all I , J ⊂ E with #I = r − 1, J = {j1, . . . , jr+1} where
j1 < . . . < jr+1 and ∆(I ∪ {jk}) = 0 if jk ∈ I .



F -matroids

Let F be a pasture.
An F -matroid is an F×-class [∆] of a Grassmann-Plücker function,
which is a nonzero map

∆ :
(E
r

)
−→ F

that satisfies the Plücker relations

r+1∑
k=1

εk∆I∪{jk}∆J−{jk} ∈ NF

for all I , J ⊂ E with #I = r − 1, J = {j1, . . . , jr+1} where
j1 < . . . < jr+1 and ∆(I ∪ {jk}) = 0 if jk ∈ I .



Matroids

Definition
A matroid is a K-matroid.

Example
1. Let Γ be a connected graph, E its set of edges and

r = #E − b1(Γ) = #{edges in a spanning tree of Γ}. Then

∆ :
(E
r

)
−→ K

I 7−→
{
1 if I is a spanning tree of Γ
0 if not

is a Grassmann-Plücker function and defines a matroid
M = [∆].

2. Let F = k be a field and r -dimensional subspace L ⊂ kn with
Grassmann-Plücker function ∆ :

(E
r

)
→ k . Let tk : k → K be

the terminal map. Then M = [tk ◦∆] is a matroid.



Regular, binary and orientable matroids

Let F be a pasture with terminal map tF : F → K. A matroid M is
representable over F if there is a Grassmann-Plücker function
∆ :

(E
r

)
→ F such that M = [tF ◦∆].

A matroid M is called
I regular if M is representable over the regular partial field F±1 ;
I binary if M is representable over the finite field F2;
I orientable if M is representable over the sign hyperfield S.

Theorem (Tutte, 1958)
A matroid is regular if and only if it is binary and orientable.



Part 3: Moduli spaces



Ordered blueprints

An ordered blueprint is a triple B = (B•,B+,≤) where
I B+ is a semiring (commutative with 0 and 1);
I B• ⊂ B+ is a multiplicatively closed subset of generators

containing 0 and 1;
I ≤ is a partial order on B+ that is additive and multiplicative,

i.e. x ≤ y implies x + z ≤ y + z and x · z ≤ y · z .

Example
A pasture F = (F×,NF ) can be realized as the ordered blueprint
B = (B•,B+,≤) with

I B+ = N[F×];
I B• = F = F× ∪ {0} ⊂ N[F×];
I and the smallest additive and multiplicative partial order ≤ on

B+ for which 0 ≤
∑

naa whenever
∑

naa ∈ NF .



Ordered blue schemes

It is possible to mimic the following notions from algebra and
algebraic geometry for ordered blueprints instead for rings:

I (prime) ideals;
I localizations;
I SpecB and ProjB (for a graded ordered blueprint B);
I (ordered blue) schemes;
I line bundles;



Matroid bundles

Let X be an ordered blue scheme. A Grassmann-Plücker
function on X is a line bundle L on X together with map

∆ :
(E
r

)
−→ Γ(X ,L)

that satifies the Plücker relations and for which the family of
sections

{
∆I

∣∣I ∈ (Er )} generates L.

A matroid bundle on X is an isomorphism class [∆] of a
Grassmann-Plücker function ∆ :

(E
r

)
→ Γ(X ,L).

Note that for an pasture F , an F -matroid is the same as a matroid
bundle on SpecF .
(SpecF is a point and Γ(SpecF ,L) = F for every line bundle L)



The matroid space

The matroid space is defined as

“Mat(r ,E ) = Proj
(
F±1
[
TI |I ∈

(E
r

)]
/(Plücker relations)

)
, ”

which can be thought of as a Grassmannian over the regular partial
field F±1 .

It comes with an embedding ι : Mat(r ,E )→ PN into projective
space where N =

(n
r

)
− 1.

The universal line bundle is Luniv = ι∗O(1) and the universal
Grassmann-Plücker function is

∆univ :
(E
r

)
−→ Γ(Mat(r ,E ),Luniv).

I 7−→ TI



The moduli property

Theorem (BL18)
Mat(r ,E ) is the fine moduli space of matroid bundles. Its universal
family is the matroid bundle [∆univ].

Corollary
Let F be a pasture. Then

Mat(r ,E )(F ) −→
{
F -matroids of rank r on E

}
χ : SpecF → Mat(r ,E ) 7−→ [χ# ◦∆univ]

is a bijection.



Part 4: Foundations of matroids



The universal pasture

In the case F = K, we obtain a bijection{
matroids of rank r on E

}
←→ Mat(r ,E )(K),

which associates with a matroid M a morphism
χM : SpecK→ Mat(r ,E ). Let xM ∈ Mat(r ,E ) be the image point
of χM .

The universal pasture of M is the “residue field” kM of Mat(r ,E )
at xM . It is indeed a pasture.



First application: realization spaces

Let M be a matroid and k a field with terminal map tk : k → K.
The realization space of M over k is

XM(k) =
{

[∆] ∈ Gr(r , n)(k)
∣∣∣M = [tk ◦∆]

}
.

Universality theorem (Mnev / Lafforgue / Vakil)
XM(k) can be arbitrarily complicated (for fixed k and varying M).

Theorem (BL18)
Let kM be the universal pasture of M. Then there exists a
canonical bijection XM(k)→ Hom(kM , k).

Corollary
M is representable over k ⇔ there is a morphism kM → k .



An observation

For many pastures F with terminal map tF : F → K the following
is true: given a matroid M and a nonzero map ∆ :

(E
r

)
→ F such

that M = [tF ◦∆], then ∆ is a Grassmann-Plücker function if it
satisfies the 3-term Plücker relations, i.e.

r+1∑
k=1

εk∆I∪{jk}∆J−{jk} ∈ NF

for all I , J ⊂ E with #I = r − 1, J = {j1, . . . , jr+1} where
j1 < . . . < jr+1 such that #I ∩ J = r − 2.

For the purpose of this talk, we call a pasture with this property a
perfect pasture.

Examples of perfect pastures are fields, K, S and F±1 .



The foundation

The weak universal pasture kwM of M is defined like the universal
pasture kM , but only taken the 3-term Plücker relations into
account.

The foundation of M is the subpasture k fM of kwM that is defined
by the cross ratios, which are terms like

T1,3 · T2,4

T1,4 · T2,3

(in the case E = {1, 2, 3, 4} and r = 2).

Proposition (Wenzel ’91 / BL18)
k fM is the “constant field” of kwM , i.e. the smallest subpasture of kwM
such that

I (kwM)×/(k fM)× is a free abelian group and
I Nkw

M
is “generated” by Nk f

M
.



Application: Tutte’s theorem

Theorem (BL18)
Let M be a matroid with foundation k fM and F a perfect pasture.
Then M is representable over F if and only if there is a morphism
k fM → F .

Theorem (BL18)
A matroid M is

I regular if and only if k fM = F±1 ;
I binary if and only if k fM = F±1 or F2.

Theorem (Tutte ’58)
A matroid M is regular if and only if it is binary and orientable.

Proof.
M is binary and orientable ⇔ k fM = F±1 or F2, and M is orientable
⇔ k fM = F±1 (there is no morphism F2 → S) ⇔ M is regular
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