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Preface

These lecture notes accompany a course that I am giving in the term March–June 2018 at IMPA.
I intend to add chapters accordingly to the progress of these lectures and to regularly put new
versions of these notes online. To make the changes between the different versions more visible,
each version will carry a distinct date on the front page. To make it possible to print these notes
chapter by chapter, chapters will start on odd pages and contain a partial bibliography. To make
changes in older parts of the lectures visible, each chapter carries the date of the last changes on
its initial page.

Aim of these notes

In these notes, we will introduce blueprints and blue schemes and explain how this theory can be
used to endow the tropicalization of a classical variety with a schematic structure.

Once the basic constructions are explained, we intend to discuss balancing conditions and
connections to related theories as skeleta of Berkovich spaces, toroidal embeddings and log-
structures. We put a particular emphasis on explaining open problems in this very young branch
of tropical geometry.

Main references

The central references for this course are the papers [GG14] and [GG16] by Jeffrey and Noah
Giansiracusa, [MR14] and [MR16] by Maclagan and Rincón, and [Lor15] by the author. There
will be plenty of secondary references, which we will cite at the appropriate places.

A useful complementary source are the lecture notes [YALE17] of a series of lectures at
YALE, which were given by various experts in the area and organized by Mincheva and Payne.

I am grateful for any kind of feedback that helps me to improve these notes!
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Chapter 1

Why tropical scheme theory?

chapter last edited on
March 12, 2018

In this first chapter, we explain the purpose of tropical scheme theory, its main achievements as
of today and some of the central question of this new branch of tropical geometry. At the end of
this chapter, we give a brief outline of the previsioned structure of the rest of these notes.

1.1 Tropical varieties

In brevity, a tropical variety is a balanced polyhedral complex. In this section, we explain this
definition, starting with the case of a tropical curve, which is easier to formulate than its higher
dimensional analogue.

Definition 1.1.1. A tropical curve (in Rn) is an embedded graph Γ in Rn with possibly unbounded
edges together with a weight function

m : EdgeΓ−→ Z>0

such that all edges have rational slopes and such that the following so-called balancing condition
is satisfied for every vertex p of Γ: for every edge e containing p, let ve ∈ Zn be the primitive
vector, which is the smallest nonzero vector pointing from p in the direction of e; then

∑
p∈e

m(e) · ve = 0.

Example 1.1.2. In Figure 1.1, we depict a tropical curve in R2, explaining the balancing
condition at the three vertices of the curve.

The generalization of the involved notions to higher dimensions requires some preparation
and leads us to the following definitions.

Definition 1.1.3. A halfspace in Rn is a subset of Rn of the form

H =
{
(x1, . . . ,xn) ∈ Rn

∣∣a1x1 + · · ·+anxn > b
}

with a1, . . . ,an,b ∈ R. The halfspace H is rational if a1, . . . ,an ∈Q.

Definition 1.1.4. A (rational) polyhedron P (in Rn) is an intersection of finitely many (rational)
halfspaces in Rn. A face of a polyhedron P is a nonempty intersection of P with a halfspace H
such that the boundary of H does not contain interior points of P.

1
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Figure 1.1: A tropical curve in R2 and the balancing condition

Note that the polyhedron P is a face of itself and that every face of a (rational) polyhedron is
again a (rational) polyhedron.

Definition 1.1.5. A polyhedral complex (in Rn) is a finite collection ∆ of polyhedra in Rn such
that the following two conditions are satisfied:

(1) each face of a polyhedron in ∆ is in ∆;

(2) the intersection of two polyhedra in ∆ is a face of both polyhedra or empty.

Definition 1.1.6. Let ∆ be a polyhedral complex. The support of ∆ is

|∆| =
⋃

P∈∆

P.

The dimension of ∆ is dim∆ = max{dimP |P ∈ ∆}. The polyhedral complex ∆ is equidimen-
sional if

|∆| =
⋃

dimP=dim∆

P

and ∆ is rational if every polyhedron P in ∆ is rational.

Exercise 1.1.7. Let H be a rational subvector space of Rn, i.e. H has a basis in Qn. Show that
the image of Zn ⊂Rn under the quotient map π : Rn→Rn/H is a lattice, i.e. a discrete subgroup
Λ that is isomorphic to Zk where k = n− dimH. The isomorphism Λ ' Zk extends to an
isomorphism Rn/H ' Rk of vector spaces, i.e. we can identify π with a surjection π′ : Rn→ Rk

that maps Zn to Zk. Show that the image π′(P) of a rational polyhedron P in Rn is a rational
polyhedron in Rk.

Let P be a rational polyhedron in Rn and x0 ∈ P. Show that the subvector space H spanned
by {x− x0|x ∈ P} is rational and does not depend on the choice of x0. Choose an isomorphism
Rn/H ' Rk as above. Conclude that the image P of P in Rk is a 0-dimensional rational
polyhedron. More generally, let Q be rational polyhedron that contains P as a face. Show that
the image Q of Q in Rk is a rational polyhedron of dimension dimQ−dimP.

We call the image Q under the quotient map π′ : Rn→ Rk, as considered in Exercise 1.1.7,
the image of Q modulo the affine linear span of P. If Q is a rational polyhedron of dimension
dimQ = dimP+1 that contains P as a face, then the image Q of Q in Rk is a one dimensional
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rational polyhedron that contains P as a boundary point. Thus we can speak of the primitive
vector vQ of Q at P, which is the smallest nonzero vector in Rk with integral coefficients that is
pointing from P in the direction of Q.

Definition 1.1.8. A tropical variety (in Rn) is an equidimensional and rational polyhedral
complex ∆ together with a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that for every polyhedron P ∈ ∆ with dimP = dim∆−1, the top dimensional polyhedra in
∆ containing P satisfy the balancing modulo the affine linear span of P, i.e.

∑
P(Q

m(Q)vQ = 0

where P and Q are the images of P and Q modulo the affine linear span of P and where vQ is the
primitive vector of Q at P.

1.2 Tropicalization of classical varieties

Let k be a field.

Definition 1.2.1. A nonarchimedean absolute value of k is a function v : k→ R>0 such that for
all a,b ∈ k,

(1) v(0) = 0 and v(1) = 1;

(2) v(ab) = v(a)v(b);

(3) v(a+b)6max{v(a),v(b)}.
An nonarchimedean absolute value is trivial if v(a) = 1 for all a ∈ k×. Otherwise it is called
nontrivial. An nonarchimedean absolute value is discrete if v(k×) is a discrete subset of R>0.

A nonarchimedean field is an algebraically closed field k together with a nontrivial nonar-
chimedean absolute value v.

Exercise 1.2.2. Let v be a nonarchimedean absolute value on a field k. Show the following
assertions.

(1) If v is trivial, then v is discrete. If k is algebraically closed and v is discrete, then v is trivial.
Give an example of a discrete absolute value that is not trivial. If v is not discrete, then its
image in R>0 is dense.

(2) We have v(k×) ⊂ R>0 and v(−1) = 1. If v(a) 6= v(b), then v(a+b) = max{v(a),v(b)}.
Conclude that if ∑

n
i=1 ai = 0 in k, then at least two terms v(ak) and v(al) with k 6= l assume

the maximum max{v(ai)}.
For the rest of this chapter, we fix a nonarchimedean field (k,v). Let X ⊂ (k×)n be an

algebraic variety, i.e. the zero set of Laurent polynomials f1, . . . , fr ∈ k[T±1
1 , . . . ,T±1

n ].

Definition 1.2.3. The tropicalization of X is defined as the topological closure X trop = trop(X)
of the image of X under the map

trop : (k×)n Rn
>0 Rn.

(v,...,v) (log,...,log)
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Example 1.2.4. In Figure 1.2, we illustrate the tropicalization of a genus 1 curve E, embedded
sufficiently general in (k×)2. More precisely, we illustrate the tropicalization of the compactifi-
cation E of E, which embeds into the projective plane P2. This means that all unbounded edges
of the tropicalization of E gain a second boundary point, which we illustrate by bullets in Figure
1.2. Note that this picture suggests that tropicalizations preserve certain geometric invariants like
the genus.

−2 0 2 −2
0

2
4

−2

0

2 tropicalization

Figure 1.2: Tropicalization of an elliptic curve, including its points at infinity

Theorem 1.2.5 (Structure theorem for tropicalizations). Let (k,v) be a nonarchimedean field
and X ⊂ (k×)n an equidimensional algebraic variety. Then

(1) X trop = |∆| for a rational and equidimensional polyhedral complex ∆;

(2) X ⊂ (k×)n determines a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that (∆,m) is a tropical variety.

The first part of the structure theorem has been proven by Bieri and Groves in their 1984
paper [BG84], which precedes tropical geometry by around 15 years and uses a slightly different
setup than we do in our statement. The second part has been proven by Speyer in his thesis
[Spe05]. A formulation of the structure theorem that is very close to ours appears in Maclagan
and Sturmfels’ book [MS15] as Theorem 3.3.6.

1.3 Two problems with the concept of a tropical variety

There are two oddities with the concept of a tropical variety that create difficulties for the devel-
opment of algebro-geometric tools for tropical geometry and their application to tropicalizations
of classical varieties.

The first problem is that the polyhedral complex ∆ with |∆|= X trop is not determined by the
classical variety X ⊂ (k×)n. In other words,

the tropicalization of a classical variety is not a tropical variety.

The second problem relates to the functions of a tropical variety. The explanation of this
issue requires some preliminary definitions.
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Definition 1.3.1. The tropical semifield is the set T= R>0 together with the addition

a+b = max{a,b}

and the usual multiplication
a ·b = ab

of nonnegative real numbers a,b.

Together with these operations T is indeed a semifield, i.e. it satisfies all of the axioms
of a field except for the existence of additive inverses. The tropical semifield allows for the
following reformulation of Definition 1.2.1: a nonarchimedean absolute value is a multiplicative
map v : k→ T that is subadditive, i.e. v(a+b)6 v(a)+ v(b) where the latter sum is taken with
respect to the addition in T.

Remark 1.3.2. In these lecture notes, we adopt the “max-times”-convention for the tropical
numbers, which is less common than the “max-plus” or the “min-plus”-convention. To explain,
the map log :T→ Rdefines an isomorphism of semirings between the tropical semifield T and the
max-plus-algebra R=(R∪{−∞},max,+). Multiplication of with (−1) defines an isomorphism
R→ R between the max-plus-algebra with the min-plus-algebra R= (R∪{∞},min,+).

A priori, it is a matter of choice, with which semifield one works. But depending on the
situation, some choices are more natural than others. When considering tropical varieties as
polyhedral complexes, then the piecewise linear structure of the tropical variety is only visible in
the logarithmic picture, i.e. one is led to work with the max-plus or the min-plus-algebra.

When working with tropical polynomials and tropical functions, in particular when compared
to classical polynomials and functions, then it is more natural and less confusing to work with
the max-times-convention.

Definition 1.3.3. The tropical polynomial algebra in T1, . . . ,Tn is the set

T[T1, . . . ,Tn] =
{

∑
J=(e1,...,en)

aJT e1
1 · · ·T en

n

∣∣aJ ∈ T and aJ = 0 for almost all J
}
,

which is a semiring with respect to the usual addition and multiplication rules for polynomials
where we apply the tropical addition aI +aJ = max{ai,aJ} to add coefficients.

A tropical polynomial f = ∑aJT e1
1 · · ·T en

n defines the function

f (−) : Tn −→ T.
x = (x1, . . . ,xn) 7−→ f (x) = max

{
aJxe1

1 · · ·xen
n
}

We are prepared to explain the second problem with tropical varieties. Namely, different
polynomials can define the same function, as demonstrated in the following example.

Example 1.3.4. Consider f1 = T 2 +1 and f2 = T 2 +T +1. Then

f1(x) = x2 +1 = max{x2,1}= max{x2,x,1}= f2(x)

for all x ∈ T.

In other words,

tropical functions are not the same as tropical polynomials.
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To understand why tropical scheme theory promises to resolve these digressions, let us have
a look at classical algebraic geometry.

For varieties over an algebraically closed field, Hilbert’s Nullstellensatz guarantees that
functions are the same as polynomials. However, if one tries to generalize the concept of a
variety to arbitrary field or even rings, one faces the same problem: different polynomials can
define the same function.

Grothendieck surpassed this problem with the invention of schemes. Since the functions of a
tropical variety do not form a ring, but merely a semiring, it is clear that Grothendieck’s concept
of a scheme does not find applications in tropical geometry.

However, F1-geometry has provided a theory of so-called semiring schemes, cf. the papers
[Dur07] of Durov, [TV09] of Toën-Vaquié and [Lor12] of the author. This theory and its
refinement in terms of blueprints provides an appropriate framework for tropical scheme theory.

1.4 Semiring schemes

In this section, we give an idea of the definition of a semiring scheme. Similar to a scheme, it is
built from the spectra of semirings. In order to understand this relation between tropical varieties
and semiring schemes that we have in mind, we explain this concept in analogy to classical
varieties and schemes, concentrating on the affine situation. More details about the construction
of semiring schemes will be explained in later parts of these notes.

Let k be an algebraically closed field and X ⊂ kn a variety, i.e. the zero set of polynomials
f1, . . . , fr ∈ k[T1, . . . ,Tn]. Let

I =
{

f ∈ k[T1, . . . ,Tn]
∣∣ f (x1, . . . ,xn) = 0 for all (x1, . . . ,xn) ∈ X

}
.

be its ideal of definition and A = k[T1, . . . ,Tn]/I its ring of regular functions.
The associated scheme is the spectrum of A, which is the set SpecA of all prime ideals of A

together with the topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Rings.
Uh 7−→ A[h−1]

We can recover the variety X from SpecA as follows. The ring of regular functions A =
k[T1, . . . ,Tn]/I equals the ring of global sections

O(SpecA) = A[1−1] = A.

The variety X is equal to the set of k-rational points of SpecA, i.e. we have a canonical bijection

X −→ Homk(A,k) = Homk(Speck,SpecA)

that sends a point x = (x1, . . . ,xn) of X to the evaluation map

evx : h 7→ h(x).

Its inverse sends a homomorphism f : A→ k to the point
(

f (T1), . . . , f (Tn)
)

of X .
The definition of SpecA extends to any semiring A as follows. There are natural extensions

of the notions of prime ideals and localizations from rings to semirings.
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Definition 1.4.1. The spectrum of A is the set SpecA of all prime ideals of A together with the
topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Semirings
Uh 7−→ A[h−1]

A semiring scheme is a topological space together with a sheaf in the category of semiring
that is locally isomorphic to the spectra of semirings. A detailed definition of all this terminology
will be given in later chapters.

1.5 Scheme theoretic tropicalization

In this section, we give an outline of the Giansiracusa tropicalization, which associates with
a classical variety a semiring scheme whose T-rational points correspond to the set theoretic
tropicalization as considered in section 1.2. For the sake of simplicity, we explain this for
subvarieties of affine space opposed to suvarieties of a torus, which is the context of section 1.2.

We require some notation. For a multi-index J = (e1, . . . ,en), we write T J = T e1
1 · · ·T en

n and
xJ = xe1

1 · · ·xen
n . Let f = ∑aJT J ∈ k[T1, . . . ,Tn]. We define

f trop = ∑v(aJ)T J ∈ T[T1, . . . ,Tn].

Let X ⊂ kn a variety with ideal of definition I.

Definition 1.5.1. The Giansiracusa tropicalization of X is the semiring scheme

Tropv(X) = Spec
(
T[T1, . . . ,Tn]/ bendv(I)

)

where the bend relations bendv(I) are defined as

bendv(I) =
(

f trop ∼ f trop + v(bJ)T J
∣∣∣ f +bJT J ∈ I

)
.

The main result of Jeffrey and Noah Giansiracusa in [GG16] is the following connection to
the set theoretic tropicalization X trop of X , which stays in analogy to the corresponding result for
schemes and varieties over an algebraically closed field.

Theorem 1.5.2 (Jeffrey and Noah Giansiracusa ’13). We can recover the tropical variety X trop

as a set via a natural bijection

X trop ∼−→ HomT(SpecT,Tropv(X)).

Moreover, in case of a projective variety X , the Giansiracusa brothers associate with Tropv(X)
a Hilbert polynomial and show that it coincides with the Hilbert polynomial of X . This might be
seen as the first striking result of tropical scheme theory.

Diane Maclagan and Felipe Rincón have shown in [MR14] that the embedding of Tropv(X)
into the n-dimensional tropical torus remembers the weights of the tropical variety X trop, pro-
vided one has chosen the structure of a polyhedral complex. To wit, the embedding of a
variety X into (k×)n yields an embedding of Tropv(X) into the n-dimensional tropical torus
SpecT[T±1

1 , . . . ,T±1
n ].
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Theorem 1.5.3 (Maclagan-Rincón ’14). Assume that X ⊂ (k×)n is equidimensional. Then the
weight function m of any realization of X trop as a tropical variety (∆,m) is determined by the
embedding of Tropv(X) into SpecT[T±1

1 , . . . ,T±1
n ].

In the author’s paper [Lor15], the above results are refined and generalized by using blueprints
and blue schemes. We mention two applications of this refined approach: the Giansiracusa
tropicalization can be applied to more general situations than tropicalizations of subvarieties of
toric varieties; for instance, it is possible to endow skeleta of Berkovich spaces with a schematic
structure under certain additional hypotheses. Another feature is that the weight function of the
tropical variety is already encoded into the structure sheaf of the “blue tropical scheme”, which
opens the possibility for a theory of abstract tropical schemes, opposed to embedded tropical
schemes.

1.6 A central problem in tropical scheme theory

The aforementioned results give hope that the replacement of tropical varieties by tropical
schemes will allow for new tools in tropical geometry, such as sheaf cohomology or a cohomo-
logical interpretation of intersection theory. However, it is not at all clear what a good notion of
a “tropical scheme” might be.

The theory of semiring schemes comes with the notion of a T-scheme, which is a morphism
X → SpecT of semiring schemes. However, there are too many T-schemes to make this a useful
class. For example, every hyperplane in Rn can be realized as a T-scheme, and such subsets of
Rn cannot satisfy the balancing condition with respect to any polyhedral subdivision and any
choice of weight function. Even worse, every intersection of hyperplanes can be realized as
T-schemes, and such intersections include all bounded convex subsets of Rn, e.g. the unit ball.

This makes clear that we have to restrict our attention to a subclass of T-schemes in order
to obtain a useful class that could replace the class of tropical varieties. Maclagan and Rincon
make a suggestion for such a class, which is based on the observation that the ideal of definition
of the tropicalization of a classical variety is a valuated matroid. In [MR14] and [MR16], they
investigate the class of T-schemes whose ideal of definition is a valuated matroid and show
certain desirable properties like chain conditions for “tropical ideals” and the preservation of
Hilbert functions.

Unfortunately, this theory encounters some serious difficulties since the class of tropical
ideals is, a priori, too restrictive. For instance, the ideals of definition of some prominent spaces
in tropical geometry, like linear tropical spaces and Grassmannians, are not tropical ideals.
Moreover both the intersection and the sum of two tropical ideals fail to be a tropical ideal
in general, which provides obstacles for primary decompositions and intersection theory of
schemes, respectively.

It might be the case that there is natural way to associate a “generically generated” tropical
ideal with ideals occuring in the situations explained above, but this seems to be a difficult
problem. It might be the case that the class of tropical ideals, as considered in [MR14], is too
restrictive for a useful theory of “tropical schemes”.

In so far, we formulate the central problem of tropical scheme theory in the following way.
We would like to find a class C of T-schemes that satisfies the following criteria:

• C contains the tropicalizations of all classical varieties and for every tropical variety, C
contains a T-scheme representing it;
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• C contains “universally constructable T-schemes” such as tropical linear spaces and
tropical Grassmannians;

• the T-rational points of every T-scheme in C yields a tropical variety; in particular, this
involves a theory of balancing conditions for T-schemes;

• defining ideals of schemes in C are closed under intersections and sums;

• C allows for a dimension theory by considering chains of irreducible reduced T-schemes
in C; in particular, this involves the notion of an irreducible T-scheme.

A more comprehensive list of open problems in tropical scheme theory was compiled at a
workshop in April 2017 at the American Institute of Mathematics, see [AIM17] for a link to the
problem list.

1.7 Outline of the previsioned contents of these notes

The central goal of these notes is to explain the material of the previous sections in detail. This
includes reviewing some parts of “classical” tropical geometry and introducing semiring schemes,
monoid schemes and blue schemes. We intend to discuss the Giansiracusa tropicalization and
subsequent results from the papers [GG14] and [GG16] by Jeffrey and Noah Giansiracusa,
[MR14] and [MR16] by Maclagan and Rincón, and [Lor15] by the author.

If we achieve this central goal in time, then we intend to treat more advanced topics like
scheme theoretic skeleta of Berkovich spaces, schemes over the tropical hyperfield or families of
matroids.

The chapters of these notes will be grouped into parts. The first part reviews the algebraic
foundations, which are (ordered) semirings, monoids, blueprints, localizations, ideals and
congruences. The second part is dedicated to generalized scheme theory and contains the
constructions of semiring schemes, monoid schemes and blue schemes. The third part enters the
central the theme of these notes, which is scheme theoretic tropicalization.
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Chapter 2

Semirings

chapter last edited on
May 16, 2018

In this chapter, we will provide the necessary background on semirings for our purposes. A
standard source for the theory of semirings is Golan’s book [Gol99], which the reader might
want to confer as a secondary reference.

We illustrate the basic definitions and facts in numerous examples. Certain basic facts,
which are either easy to prove or allow for a proof analogous to the case of rings, will be left as
exercises.

2.1 The category of semirings

Definition 2.1.1. A (commutative) semiring (with 0 and 1) is a set R together with an addition
+ : R×R→ T , a multiplication · : R×R→ R and two constants 0 and 1 such that the following
axioms are satisfied:

(1) (R,+) is an associative and commutative semigroup with neutral element 0;

(2) (R, ·) is an associative and commutative semigroup with neutral element 1;

(3) (a+b)c = ac+bc for all a,b,c ∈ R;

(4) 0 ·a = 0 for all a ∈ R.

A morphism between semirings R1 and R2 is a map f : R1→ R2 such that f (0) = 0, f (1) = 1,
f (a+ b) = f (a)+ f (b) and f (ab) = f (a) · f (b) for all a,b ∈ R. We denote the category of
semirings by SRings.

Let R be a semiring. A subsemiring of R is a subset S that contains 0 and 1 and is closed
under sums and products. The unit group or units of R is the subset R× of multiplicatively
invertible elements together with the restriction of the multiplication of R to R×. A semifield is a
semiring R such that R× = R−{0}.

Note that the constants 0 and 1 of a semiring R are uniquely determined as the neutral
elements of addition and multiplication, respectively. In some examples, we take the liberty to
omit an explicit description of these constants. Note further that the multiplication of R does
indeed restrict to a multiplication R××R×→ R×, which turns R× into a multiplicative group.

Remark 2.1.2. Similar to the notion of a ring, the notion of a semiring is not standardized in the
literature. In other texts, the reader will find noncommutative semirings and semirings without 0
or 1. Similarly, semiring morphism might not required to preserve 0 or 1, which are properties
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that do not follow automatically from the other axioms. We will not encounter such weaker
notions of semirings in these notes.

Example 2.1.3. Every ring is tautologically a semiring. Examples of semirings that are not rings
are the following: the natural numbers N with respect to the usual addition and multiplication;
the nonnegative real numbers R>0 with respect to the usual addition and multiplication; and the
tropical numbers T.

Note that a subsemiring S of R is a semiring with respect to the restrictions of the addition
and multiplication of R. This includes the subsemiring of tropical integers OT = {a ∈ T|a6 1}
of T and the subsemiring of Boolean numbers B= {0,1} of OT.

Examples of morphisms of semirings are inclusions S ↪→ R of subsemirings into the ambient
semiring. Other examples are the following maps: f : T→ B with f (a) = 1 for all a 6= 0;
g : N→ B with g(a) = 1 for all a 6= 0; h : OT→ B with h(a) = 0 for all a 6= 1.

Exercise 2.1.4. Show that the min-plus-algebra R and the max-plus-algebra R, as defined in Re-
mark 1.3.2, are semifields. What are the neutral elements for addition and multiplication? Show
that the logarithm defines an isomorphism of semirings log : T→ R. Show that multiplication
with −1 defines an isomorphism of semirings (−1) : R→ R.

Let X be a closed subset of Rn. Show that the set Fun(X ,R) of functions from X to R
inherits the structure of a semiring from the addition and multiplication in R. Let CPL(X) be
the smallest subring of Fun(X ,R) that contains all functions of the type ax+b with a ∈ Z and
b ∈ T. Show that CPL(X) consists of all convex piecewise linear functions f : X → R with
integer slopes for which there is a finite covering of X by closed subsets Zi such that f |Zi is linear
for each i.

Exercise 2.1.5. Let f1 : S→ R1 and f2 : S→ R2 be two morphisms of semirings. Define the
tensor product R1⊗S R2 as the set of finite sums ∑ai⊗bi of tensors ai⊗bi of elements ai ∈ R1
and bi ∈ R2, subject to the same relations as in the case of the tensor product of rings. Show that
this forms a semiring that comes with morphisms ιi : Ri→ R1⊗S R2 (i = 1,2), sending a ∈ R1 to
a⊗1 and b ∈ R2 to 1⊗b, respectively.

Formulate and prove the usual properties of the tensor product: (1) The tensor product is
the colimit (or pushout) of the morphism f1 and f2; (2) every bilinear morphism from R1×R2
defines a unique morphism from R1⊗R2.

Exercise 2.1.6. Show that the category of semirings is complete and cocomplete. More precisely
show the following.

(1) Show that the natural numbers N form an initial object and that the trivial ring {0 = 1}
forms a terminal object in SRings.

(2) Let {Ri}i∈I be a family of semirings. Then the Cartesian product ∏I∈I Ri together with
componentwise addition and multiplication is a semiring, and the projections π j : ∏Ri→
R j are semiring homomorphisms. The semiring ∏I∈I Ri together with the projections π j is
a product of the Ri.

(3) Let f ,g : R1→ R2 be two morphisms of semirings. Show that eq( f ,g) = {a ∈ R1| f (a) =
g(a)} is a subsemiring of R1 and that the eq( f ,g) together with the inclusion eq( f ,g)→R1
is an equalizer of f an g.

(4) Let f ,g : R1→ R2 be two morphisms of semirings. Show that there exists a coequalizer of
f and g. Hint: Use Lemma 2.4.8 to show that there exists a congruence generated by the
relations f (a)∼ g(a) where a ∈ R1.
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(5) Let {Ri}i∈I be a finite family of semirings. Show that it has a coproduct, which we denote
by
⊗

i∈I Ri. Hint: Use filtered colimits (i.e. “unions”) of finite tensor products over N.

Exercise 2.1.7. Show that a morphism f : R1 → R2 is a monomorphism if and only if it is
injective. Show that f is an isomorphism if and only if f is bijective. Show that every surjective
morphism is an epimorphism. Give an example of an epimorphism that is not surjective (hint: cf.
Exercise 2.7.3).

Exercise 2.1.8. Let f : R→ S be a morphism of semirings. Show that the set theoretic image
im f = f (R) is a subsemiring of S. Show that im f together with the restriction f ′ : R→ im f
of f and the inclusion im f → S is the categorical image of f . Conclude that every morphism
factors into an epimorphism followed by a monomorphism.

2.2 First properties

We list some first properties that characterize important subclasses of semirings.

Definition 2.2.1. A semiring R is

• without zero divisors if for any a,b ∈ R, the equality ab = 0 implies that a = 0 or b = 0;

• integral (or multiplicatively cancellative) if 0 6= 1 and for any a,b,c ∈ R the equality
ac = bc implies c = 0 or a = b;

• strict if a+b = 0 implies a = b = 0 for all a,b ∈ R;

• (additively) cancellative if for any a,b,c ∈ R the equality a+ c = b+ c implies a = b;

• (additively) idempotent if 1+1 = 1.

Remark 2.2.2. While most of the above notions are standard and self-explanatory, the attribute
“integral” has been used for a variety of different properties of a semiring like being without zero
divisors, not being a product of two nontrivial semirings or having a unique maximal element
with respect to a certain partial order.

Since “multiplicatively cancellative” seems to awkward as terminology, and its literal mean-
ing does not indicate that 0 6= 1, we avoid this latter terminology in this text.

The justification for our usage of “integral” stems from the historical origin of the term
“integral domain” (“Integritätsbereich” after Kronecker), which was used for generalizations of
the integers to certain subrings of number fields, which are called rings of integers nowadays.1

We will see in Exercise 2.7.4 that a semiring is integral (in our sense) if and only if it is isomorphic
to a subsemiring of a semifield.

Lemma 2.2.3. Let R be a semiring.

(1) If 0 = 1, then R is trivial, i.e. R consists of the single element 0 = 1.

(2) If R is idempotent and cancellative, then R is trivial.

(3) If R is idempotent, then a+a = a for all a ∈ R.

(4) If R is idempotent, then R is strict.

1For more details on the origins of “integral domain”, see the answer of “t.b.” in https://math.
stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from#46026.

https://math.stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from#46026
https://math.stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from#46026
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(5) If R is integral, then R is without zero divisors.

Proof. If 1 = 0, then we have for every a ∈ R that a = 1 ·a = 0 ·a = 0. Thus (1).
If R is idempotent and cancellative, then 1+1 = 1 = 1+0 implies 1 = 0. Thus (2).
If 1+1 = 1, then we have for every a ∈ R that a+a = a(1+1) = a ·1 = a. Thus (3).
If R is idempotent and a+b = 0, then we have a = a+a+b = a+b = 0 and similarly b = 0.

Thus (4).
If R is integral and ab = 0, then ab = 0 = 0 ·b implies b = 0 or a = 0. Thus (5).

Note that a nontrivial semiring without zero divisors does not have to be integral, in contrast
to the situation for rings. An example verifying this claim is the tropical polynomial ring T[T ],
cf. Exercise 2.4.5; see Exercise 2.3.4 for another example.

Exercise 2.2.4. Verify which of the semirings from Example 2.1.3 and Exercise 2.1.4 are without
zero divisors, integral, strict, cancellative or idempotent.

Exercise 2.2.5. Show that the morphism ι : R→ R⊗N Z, sending a to a⊗ 1, satisfies the
following properties: RZ = R⊗NZ is a ring and every semiring morphism f : R→ S into a ring
S factors uniquely through ι. Show that R is cancellative if and only if ι : R→ RZ is injective.
Show that R contains an additive inverse of 1, i.e. an element a such that 1+a = 0, if and only if
R is a ring. Show that in this case ι : R→ RZ is an isomorphism.

2.3 Semigroup algebras and polynomial semirings

Definition 2.3.1. Let R be a semiring and A a multiplicatively written abelian semigroup with
neutral element 1A. The semigroup algebra of A over R is the semigroup ring R[A] of finite
R-linear combinations ∑raa of elements a ∈ A, i.e. the sum contains only finitely many nonzero
coefficients ra ∈ R. The addition of R[A] is defined by the formula

[
∑raa

]
+
[
∑saa

]
= ∑(ra + sa)a

and the product is defined by the formula
[
∑raa

]
·
[
∑saa

]
= ∑

a=bc
(rb · sc)a.

The zero of R[A] is the empty sum 0, i.e. the linear combination ∑raa with ra = 0 for all a, and
the one of R[A] is the linear combination 1 = ∑raa for which r1A = 1 and ra = 0 for a 6= 1A.

If A is the free abelian semigroup on the set of generators {Ti}i∈I , then we write R[A] =
R[Ti]i∈I or R[A] = R[T1, . . . ,Tn] if I = {1, . . . ,n}. We call R[Ti] the free algebra over R in {Ti} or
the polynomial semiring over R in {Ti}.

We allow ourselves to omit zero terms from the sums ∑raa, i.e. we may write sb+ tc for
the element ∑raa of R[A] with rb = b, rc = t and ra = 0 for a 6= b,c. We simply write a for the
element 1a of R[A] and r for the element r1A of R[A].

Exercise 2.3.2. Show that R[A] is a semiring. Show that the map ιR : R→ R[A] with ιR(r) = r
is an injective morphism of semirings. Show that the map ιA : A→ R[A] with ιA(a) = a is a
multiplicative map, i.e. ιA(1A) = 1 and ιA(ab) = ιA(a) · ιA(b) for all a,b ∈ A. Show that for
every semiring morphism fR : R→ S and every multiplicative map fA : A→ S, there is a unique
semiring morphism f : R[A]→ S such that fA = f ◦ ιA and fR = f ◦ ιR. Use this to formulate and
prove the universal property for a polynomial semiring over R.
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Exercise 2.3.3. Let R be a semiring and A an abelian semigroup with neutral element. Show
that R[A]' N[A]⊗N R.

Exercise 2.3.4. Let A = {1, ε} be the semigroup with ε2 = ε and B the Boolean numbers (cf.
Example 2.1.3). Show that B[A] has 4 elements. Determine the addition and multiplication table
for B[A]. Show that B[A] is without zero divisors, but not integral.

2.4 Quotients and congruences

Definition 2.4.1. Let R be a semiring. A congruence on R is an equivalence relation c on R that
is additive and multiplicative, i.e. (a,b) and (c,d) in c imply (a+ c,b+d) and (ac,bd) in c for
all a,b,c,d ∈ R.

Exercise 2.4.2. Let R be a ring. Show that for every ideal I of R, the set {(a,b)|a−b ∈ I} is a
congruence on R and that every congruence is of this form.

Exercise 2.4.3. Let k,n ∈ N. Show that the set

ck,n =
{
(m+ rk,m+ sk) ∈ N×N

∣∣m,r,s ∈ N and m> n or r = s = 0
}

is a congruence on N and that every congruence of N is of this form.

Given a congruence c on R, we often write a ∼c b, or simply a ∼ b, if there is no danger
of confusion, to express that (a,b) is an element of c. The following proposition shows that
congruences define quotients of semirings.

Proposition 2.4.4. Let R be a semiring and c be a congruence. Then the associations [a]+ [b] =
[a+b] and [a] · [b] = [ab] are well-defined on equivalence classes [a] of c and turn the quotient
R/c into a semiring with zero [0] and one [1].

The quotient map π : R→ R/c is a morphism of semirings that satisfies the following
universal property: every morphism f : R→ S of semiring such that f (a) = f (b) whenever a∼ b
in c factors uniquely through π.

Proof. Consider a∼ a′ and b∼ b′. Then a+b∼ a′+b′ and ab∼ a′b′. Thus the addition and
multiplication of R/c does not depend on the choice of representative and is therefore well-
defined. The properties of a semiring follow immediately, including the characterization of the
zero as [0] and the one as [1]. That π : R→ R/c is a semiring homomorphism is tautological by
the definition of R/c.

Let f : R→ S be a semiring morphism such that f (a) = f (b) whenever a∼ b in c. For f to
factor into f ◦π for a semiring morphism f : R/c→ S, it is necessary that f ([a]) = f ◦π(a)= f (a).
This shows that f is unique if it exists. Since a ∼ b implies f (a) = f (b), we conclude that f
is well-defined as a map. The verification of the axioms of a semiring morphism are left as an
exercise.

Exercise 2.4.5. Let n> 1. Show that R = T[T1, . . . ,Tn] is without zero divisors, but not integral.
Show that the relation {( f ,g) ∈ R×R| f (x) = g(x) for all x ∈ Tn} is a congruence on R; cf.
section 1.3 for definition of f (x). Show that the quotient R/c is integral and isomorphic to
CPL(Rn); cf. Exercise 2.1.4 for the definition of CPL(Rn).



18 Semirings

Conversely, every quotient is characterized by a congruence. More precisely, for every
semiring morphism, there is a congruence that characterizes which elements in the domain
become identified in the image.

Definition 2.4.6. Let f : R→ S be a morphism of semirings. The congruence kernel of f is the
relation c( f ) = {(a,b) ∈ R×R| f (a) = f (b)} on R.

Lemma 2.4.7. The congruence kernel c( f ) of a morphism f : R→ S of semirings is a congruence
on R.

Proof. That c= c( f ) is an equivalence relation follows from the following calculations: f (a) =
f (a) (reflexive); f (a) = f (b) implies f (b) = f (a) (symmetry); f (a) = f (b) and f (b) = f (c)
imply f (a) = f (c) (transitive). Additivity and multiplicativity follow from: f (a) = f (b) and
f (c) = f (d) imply f (a+c) = f (a)+ f (c) = f (b)+ f (d) = f (b+d) and f (ac) = f (a) · f (c) =
f (b) · f (d) = f (bd). This shows that c is a congruence.

As a consequence of this lemma, we see that for a semiring R, the associations
{

congruences on R
}
←→

{
quotients of R

}

c 7−→ R→ R/c
c(π) 7−→ π : R� R′

are mutually inverse bijections. Note that strictly speaking a quotient of R is an equivalence class
of surjective semiring morphisms R→ R′ where two surjections π1 : R→ R1 and π2 : R→ R2
are equivalent if there exists an isomorphism f : R1→ R2 such that f ◦π2 = π2.

We will see in section 2.5 that we do not have a correspondence between quotients and ideals,
as in the case of rings. In so far, one has to work with congruences when one wants to describe
quotients of semirings.

A subset S of R×R is symmetric if (y,x) ∈ S if (x,y) ∈ S. To make the notation “〈S〉”
compatible with the corresponding notation in section 5.2, we will consider only symmetric
subsets in the following.

Lemma 2.4.8. Let R be a semiring and S⊂ R×R a symmetric subset. Then there is a smallest
congruence c = 〈S〉 containing S. The quotient map π : R→ R/〈S〉 satisfies the following
universal property: every morphisms f : R→ R′ with the property that f (a) = f (b) whenever
(a,b) ∈ S factors uniquely through π.

Proof. It is readily verified that the intersection of congruences is again a congruence. As
a consequence, the intersection of all congruences containing S is the smallest congruence
containing S.

Given any morphism f : R→ R′ with the property that f (a) = f (b) whenever (a,b) ∈ S,
then the congruence kernel c( f ) must contain S and thus c= 〈S〉. Using Proposition 2.4.4, we
see that f factors uniquely through π.

This lemma shows that we can construct new semirings from known ones by prescribing
a number of relations: let R be a semiring and {ai ∼ bi} a symmetric set of relations on R,
i.e. S = {(ai,bi)} is a symmetric subset of R×R. Then we define R/〈ai ∼ bi〉 as the quotient
semiring R/〈S〉.

Exercise 2.4.9. Show that B[T ]/〈T 2 ∼ T 〉 is isomorphic to the semigroup algebra B[A] where
A = {1, ε} is the semigroup with ε= ε2; cf. Exercise 2.3.4. Determine all congruences on B[A].
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Exercise 2.4.10. Let R be a semirings and c a congruence on R. Show that c is a subsemiring of
R×R containing the image of the diagonal map ∆ : R→ R×R.

Let f : R→ S be a homomorphism of semirings. Show that the congruence kernel of f
together with the inclusion into R×R is the equalizer of the morphisms f ◦pr1 and f ◦pr2 from
R×R to S where pri : R×R→ R is the i-th canonical projection (i = 1,2).

2.5 Ideals

While the concept of congruences is the correct generalization of ideals from rings to semirings
that characterizes quotients of semirings, there are other more straight-forward generalizations
of ideals, which carry over other properties from rings to semirings. In this section, we will
examine two such notions: ideals and k-ideals.

Definition 2.5.1. Let R be a semiring. An ideal of R is a subset I of R such that 0, ac and a+b
are elements of I for all a,b ∈ I and c ∈ R. A k-ideal or a subtractive ideal of R is an ideal I of R
such that a+ c = b with a,b ∈ I and c ∈ R implies c ∈ I.

Once we make sense of the concept of a (semi)module over R, we could characterize an ideal
of R as a submodule of R. The relevance of (prime) ideals of semirings lies in the fact that they
are the good notion of points of the spectrum of R. We will come back to this in the chapter on
semiring schemes.

The relevance of k-ideals is easier to explain. Namely, they form the class of subsets that is
characterized as the 0-fibres, or kernels, of semiring morphisms. We assume, without evidence,
that the “k” in “k-ideal” stands for “kernel”. The name k-ideal seems to be coined by Henriksen
in [Hen58].

Definition 2.5.2. Let f : R→ S be a semiring morphism. The (ideal) kernel of f is the inverse
image ker( f ) = f−1(0) of 0.

Let S be a subset of R. The congruence generated by S is the congruence c(S) generated by
{(a,0)|a ∈ S}.

Proposition 2.5.3. The kernel ker( f ) of a morphism of semiring f : R→ S is a k-ideal and every
k-ideal appears as a kernel. More precisely, if I is an ideal of R and c= c(I) is the congruence
generated by I, then a∼c b if and only if there are elements c,d ∈ I such that a+ c = b+d. The
ideal I is an k-ideal if and only if I is the kernel of π : R→ R/c.

Proof. We begin with the verification that ker( f ) is a k-ideal. Clearly 0 ∈ ker( f ). Let a,b ∈
ker( f ) and c ∈ R. Then f (ac) = f (a) f (c) = 0 · f (c) = 0 and f (a+b) = f (a)+ f (b) = 0, thus
ac and a+b are in ker( f ). If a+ c = b, then f (c) = 0+ f (c) = f (a)+ f (c) = f (b) = 0 shows
that c ∈ ker( f ). Thus ker( f ) is a k-ideal.

In order to verify the second claim of the proposition, we begin with showing that the relation

c′ =
{
(a,b) ∈ R×R |a+ c = b+d for some c,d ∈ I

}

is a congruence. Reflexivity and symmetry are immediate from the definition. Transitivity is
shown as follows: if a∼c′ b∼c′ b′, then there are elements c,d,c′,d′ ∈ I such that a+ c = b+d
and b+ c′ = b′+ d′. Adding c′ to the former and d to the latter equation yields a+ c+ c′ =
b+d + c′ = b′+d +d′. Since I is closed under sums, c+ c′ and d +d′ are in I and thus a∼c′ b′.
This shows that c′ is an equivalence relation.
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We continue with the verification of additivity and multiplicativity of c′. Let a ∼c′ b and
a′ ∼c′ b′, i.e. a+ c = b+d and a′+ c′ = b′+d′ for some c,d,c′,d′ ∈ I. Adding these equations
yields a+a′+ c+ c′ = b+b′+d +d′ where c+ c′ and d +d′ are in I. Thus a+a′ ∼c′ b+b′,
which establishes additivity. Multiplying these equations yields

aa′+ac′+a′c+ cc′ = (a+ c)(a′+ c′) = (b+d)(b′+d′) = bb′+bd′+b′d +dd′.

Since ac′+a′c+cc′ and bd′+b′d+dd′ are in I, we have aa′∼c′ bb′, which shows multiplicativity
of c′. Thus c′ is a congruence.

As the next step, we verify that c′ is equal to the congruence c generated by I. Since
a+0 = 0+0, we see that c′ contains the generating set {(a,0)|a ∈ I} of c. Thus c is contained
in c′. Conversely, consider a relation a ∼c′ b in c′, i.e. a+ c = b+ d for some b,d ∈ I. Then
b∼c 0∼c d and, by the additivity of c,

a = a+0 ∼c a+ c = b+d ∼c b+0 = b,

i.e. a∼c b in c. This shows that c= c′, as claimed.
Finally, we show that I is a k-ideal if and only if it is the kernel of π : R→ R/c, i.e. I = {a ∈

R|a∼c 0}. By the definition of c= c(I), it is clear that I ⊂ ker(π). By the characterization of c
as c′, we have a ∈ ker(π) if and only if there are elements c,d ∈ I such that a+ c = 0+d = d.
Thus I = ker(π) if and only if I is a k-ideal. This finishes the proof of the proposition.

As a consequence, proven in Corollary 2.5.4 below, we see that for every subset S of a
semiring R, there is a unique smallest (k-)ideal containing S. We call this (k-)ideal the (k-)ideal
generated by S and denote ideal generated by S by 〈S〉 and the k-ideal generated by S by 〈S〉k.

Corollary 2.5.4. Let R be a semiring and S a subset of R. The ideal generated by S is

〈S〉 =
{

∑aisi
∣∣ai ∈ R,si ∈ S∪{0}

}
.

The k-ideal generated by S is

〈S〉k =
{

c ∈ R
∣∣ ∑aisi + c = ∑b jt j for some ai,b j ∈ R,si, t j ∈ S∪{0}

}
.

Proof. Let I = {∑aisi|ai ∈ R,si ∈ S∪{0}}. It is clear that S⊂ I ⊂ 〈S〉. It follows that 〈S〉= I if
we can show that I is an ideal. This can be shown directly. Clearly, 0 ∈ I and I is closed under
addition. Given an element a = ∑aisi in I and b ∈ R, then ab = ∑(aib)si is in I. This shows that
I is an ideal and proves the first claim of the corollary.

Note that the right hand side of the last equation of corollary is equal to J = {c ∈ R|a+ c =
b for some a,b ∈ I} where I is as above. Let c = c(I) be the congruence generated by I and
π : R→ R/c the quotient map. It follows from Proposition 2.5.3 that J is the kernel of π and thus
a k-ideal. Since obviously S⊂ J ⊂ 〈S〉k, we conclude that 〈S〉k = J. This completes the proof of
the corollary.

To conclude, ideals, k-ideals and congruences are different generalizations of ideals to
semirings, which do not coincide in general. There are ways to pass from one class to the other,
which follows from our previous results.

Namely, with a congruence c on a semiring R, we can associate the kernel of the projection
πc : R→ R/c, which is a k-ideal; with a k-ideal I, we can associate the congruence c(I) generated
by I. We have that the kernel of R→ R/c(I) is I and the congruence c(kerπc) is contained in c,
but in general not equal to c.
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On the other end, every k-ideal is tautologically an ideal. With an ideal I of R, we can
associate the smallest k-ideal containing I, which is the kernel of R→ R/c(I). We summarize
this discussion in the following picture.

“submodules” “kernels” “quotients”
{

ideals of R
} {

k-ideals of R
} {

congruences on R
}

Exercise 2.5.5. Describe all ideals, k-ideals and congruences for N; cf. Exercise 2.4.3. Describe
the maps from the above diagram in this example.

Exercise 2.5.6. Let A = {1, ε} be the semigroup with ε2 = ε and R =B[A] the semigroup algebra,
which has been already the protagonist of Exercises 2.3.4 and 2.4.9. Determine all ideals, k-ideals
and congruences of B[A] and describe the above maps between ideals, k-ideals and congruences
explicitly.

Exercise 2.5.7. Let R be an idempotent semiring, I an ideal of R and c = c(I) the associated
congruence. Show that a∼c b if and only if a+ c = b+ c for some c ∈ I. Conclude that I is a
k-ideal if and only if a+ c = c with c ∈ I implies a ∈ I.

Exercise 2.5.8. Let R be a cancellative semiring and I an ideal of R. Let RZ = R⊗N Z and
ι : R→ RZ be the morphism that sends a to a⊗1. Let J = 〈ι(I)〉 be the ideal of RZ generated by
ι(I). Show that I is a k-ideal if and only if I = ι−1(J). Find an example of a non-cancellative
semiring R with k-ideal I such that I is not equal to ι−1

(
〈ι(I)〉

)
.

2.6 Prime ideals

In the last two sections of this chapter, we turn to topics of relevance for scheme theory, which
are prime ideals and localizations, respectively.

Definition 2.6.1. A (k-)ideal I of R is proper if it is not equal to R. It is maximal if it is proper
and if I ⊂ J implies I = J for any other proper (k-)ideal. It is prime if its complement S = R− I
is a multiplicative subset of R.

Note that a k-ideal I is a prime k-ideal if and only if it is a prime ideal. In so far, we can
use the attribute “prime” unambiguously for ideals and k-ideals. Note, however, that the k-ideal
generated by a prime ideal does not need to be prime; we provide proof in Example 2.6.2 below.

The situation for maximal (k-)ideals is more subtle. A k-ideal that is a maximal ideal is
tautologically a maximal k-ideal. But the converse fails to be true in general, as demonstrated in
Example 2.6.2. This means that we have to make a clear distinction between maximal ideals and
maximal k-ideals.

Example 2.6.2. Consider the semiring R = B[T ]/〈T 2 ∼ T ∼ T +1〉, which is a quotient of the
semiring B[A] from Exercises 2.3.4, 2.4.9 and 2.5.6. It consists of the elements 0,1,T and its
unit group is R× = {1}. The proper ideals of R are (0) = {0} and (T ) = {0,T}, which are both
prime ideals, but only (0) is a k-ideal.

This example demonstrates the following effects:

• (0) is a maximal k-ideal, but it is not a maximal ideal since it is properly contained in the
proper ideal (T ).
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• (T ) is a prime ideal, but the k-ideal generated by (T ), which is R, is not a prime k-ideal.

• The quotient R/(0) of R by the maximal k-ideal (0), which is equal to R, is not a semifield.

• The quotient R/(T ) of R by the k-ideal generated by (T ), which is the trivial semiring
R/R = {0}, is not a semifield.

Being warned that (k-)ideals for semirings fail to satisfy certain properties that we are used
to from ideal theory of rings, we begin with the proof of properties that extend to the realm of
semirings.

Lemma 2.6.3. Let R be a semiring and I a k-ideal of R. Then I is prime if and only if R/I is
nontrivial and without zero divisors.

Proof. The k-ideal I is prime if and only if for all a,b ∈ R, ab ∈ I implies that a ∈ I or b ∈ I.
Passing to the quotient R/I, this means that [ab] = [0] implies [a] = [0] or [b] = [0] where we use
that the kernel of R→ R/I is I, cf. Proposition 2.5.3. This latter condition is equivalent to R/I
being nontrivial and without zero divisors.

Remark 2.6.4. As shown in Example 2.6.2, the usual characterization of maximal ideals as
those ideals whose quotient is a field does not hold for semirings. We can only give the following
quite tautological characterization of maximal k-ideals: a k-ideal I is maximal if and only if the
zero ideal {0} of R/I is a maximal k-ideal.

Lemma 2.6.5. Every maximal ideal of a semiring is a prime ideal.

Proof. Let R be a semiring and m a maximal ideal. Consider a,b ∈ R such that ab ∈ m, but
a /∈m. We want to show that b ∈m.

Since m is maximal and does not contain a, the set S =m∪{a} generates the ideal (1) = R.
By Corollary 2.5.4, this means that 1 = ∑ekck for some ck ∈ S and ek ∈ R. Note that bdk ∈ m
since either dk ∈ m or dk = a. Thus bekdk ∈ m and b = b · 1 = ∑bekckis an element of m as
claimed, which completes the proof.

Lemma 2.6.6. Every maximal k-ideal of a semiring is a prime k-ideal.

Proof. We can prove this affirmation along the lines of the proof of Lemma 2.6.5. However, in
the present case, R is equal to the k-ideal generated by S =m∪{a} as a k-ideal. By Corollary
2.5.4, this means that ∑ekck +1 = ∑ fldl for some ck,dl ∈ S and ek, fl ∈ R. Multiplying with b
yields ∑bekck +b = ∑b fldl . As reasoned in the proof of Lemma 2.6.5, bekck and b fldl are in m,
and since m is a k-ideal, b ∈m as desired.

Lemma 2.6.7. Let f : R→ R′ be a morphism of semirings and I an ideal of R′. Then f−1(I) is
an ideal of R. If I is prime, then f−1(I) is prime. If I is a k-ideal, then f−1(I) is a k-ideal.

Proof. We verify that f−1(I) is an ideal. Obviously, it contains 0. If a,b ∈ f−1(I) and c ∈ R,
then f (a+b) = f (a)+ f (b) ∈ I and f (ca) = f (c) f (a) ∈ I. Thus a+b,ca ∈ f−1(I). This shows
that f−1(I) is an ideal.

Assume that I is prime, i.e. S = R′− I is a multiplicative set. Then f−1(S) = R− f−1(I) is a
multiplicative set of R and thus f−1(I) is a prime ideal of R.

Assume that I is a k-ideal and consider an equality a+ c = b in R with a,b ∈ f−1(I). Then
f (a)+ f (c) = f (b) and f (a), f (b) ∈ I, which implies that f (c) ∈ I. Thus c ∈ f−1(I), which
shows that f−1(I) is a k-ideal.
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Remark 2.6.8. There is also a concept of prime congruences. More precisely, there are two
possible variants. Let c be a congruence on R. Then c is a weak prime congruence on R if R/c is
nontrivial and without zero divisors, and c is a strong prime congruence on R if R/c is integral.

However, we do not intend to discuss congruence schemes in these notes and therefore do
not pursue the topic of prime congruences. Note that as of today, there is no satisfying theory of
congruences schemes for semirings, but that such a theory relies on solving some open problems
concerning the structure sheaf of congruence spectra. To explain this issue in more fancy words:
one is led to work with a Grothendieck pre-topology on the category of semirings that is not
subcanonical. This requires a sophisticated setup that establishes substitutes of certain standard
facts for subcanonical topologies.

Exercise 2.6.9. Determine all prime (k-)ideals, all maximal (k-)ideals and all weak and strong
prime congruences of N and B[A] where A = {1, ε} is the semigroup with ε2 = ε. Let f : N→ Z
be the inclusion of the natural numbers into the integers. Describe the map p→ f−1(p) from the
set of prime ideals of Z to the set of prime ideals of N explicitly. Is it injective? Is it surjective?

Exercise 2.6.10. Let R be a semiring and I a proper (k-)ideal of R. Show that R has a maximal
(k-)ideal that contains I. Hint: The usual proof for rings works also for this case. In particular,
the claim relies on the axiom of choice aka Zorn’s lemma.

Exercise 2.6.11. Let R be a semiring and I,J be ideals of R. We define their product I · J as the
ideal generated by {ab|a ∈ I,b ∈ J}. Show that an ideal p of R is prime if and only if I · J ⊂ p
implies I ⊂ p or J ⊂ p for all ideals I and J of R.

2.7 Localizations

Definition 2.7.1. Let R be a semiring and S ⊂ R be a multiplicative subset of R, i.e. a subset
that contains 1 and is closed under multiplication. The localization of R at S is the quotient
S−1R of S×R by the equivalence relation that identifies (s,r) with (s′,r′) whenever there is a
t ∈ S such that tsr′ = ts′r in R. We write r

s for the equivalence class of (s,r). The addition and
multiplication of S−1R are defined by the formulas

r
s
+

r′

s′
=

sr′+ s′r
ss′

and
r
s
· r
′

s′
=

r′r
ss′
.

The zero of S−1R is 0
1 and its one is 1

1 .
We write R[h−1] for S−1R if S = {hi}i∈N for an element h∈ R and call R[h−1] the localization

of R at h. We write Rp for S−1R if S = R−p for a prime ideal p of R and call Rp the localization
of R at p. Assume that S = R−{0} is a multiplicative subset of R. Then we write Frac(R) for
S−1R and call it the semifield of fractions of R.

If I is an ideal of R, then we write S−1I for the ideal of S−1R that is generated by { a
1 |a ∈ I}.

Lemma 2.7.2. Let R be a semiring, I an ideal of R and S a multiplicative subset of R. Then

S−1I =
{ a

s ∈ S−1R
∣∣a ∈ I,s ∈ S

}
.

Proof. It is clear that S−1I contains the set {a
1 |a ∈ I} of generators of S−1I. If we have proven

that the set IS = {a
s |a ∈ I,s ∈ S} is an ideal, then it follows that it contains S−1I. The reverse

inclusion follows from the observation that for a
s ∈ IS, we have a

s =
1
s · a

1 ∈ S−1I.
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We are left with showing that IS is an ideal. It obviously contains 0
1 . Given a

s ∈ IS and
b
t ∈ S−1R, then a

s · b
t =

ab
st ∈ IS since ab ∈ I. Given a

s ,
b
t ∈ IS, then a,b ∈ I and ta+ sb ∈ I. Thus

a
s +

b
t =

ta+sb
st is an element of IS. This verifies that IS is an ideal of S−1I and finishes the proof

of the lemma.

Exercise 2.7.3. Let R be a semiring and S a multiplicative subset of R. Show that the map
ιS : R→ S−1R, defined by ιS(a) = a

1 , is a morphism of semirings that maps S to the units of S−1R.
Show that it satisfies the usual universal property of localizations: every morphism f : R→ R′

of semirings that maps S to the units of R′ factors uniquely through ιS. Show that ιS is an
epimorphism.

Exercise 2.7.4. The subset S = R−{0} is a multiplicative subset if and only if R is nontrivial
and without zero divisors. Assuming that S is a multiplicative subset, show that FracR is a
semifield. Show that the morphism ιS : R→ Frac(R) is injective if and only if R is integral.
Describe an example where R→ Frac(R) is not injective.

Proposition 2.7.5. Let R be a semiring, S a multiplicative subset of R and ιS : R→ S−1R the
localization morphism. Then the maps

{
prime ideals p of R with p∩S = /0

}
←→

{
prime ideals of S−1R

}

p
Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections. A prime ideal p of R with p∩S = /0 is a k-ideal if and only if
S−1p is a k-ideal.

Proof. To begin with, we verify that both Φ and Ψ are well-defined. Let p be a prime ideal of R
such that p∩S = /0. Then S−1p= {a

s |a ∈ p,s ∈ S} by Lemma 2.7.2. Consider a
s ,

b
t ∈ S−1R such

that a
s · b

t = ab
st ∈ S−1p, i.e. ab ∈ p. Then a ∈ p or b ∈ p and thus a

s ∈ S−1p or b
t ∈ S−1p. This

shows that S−1p is a prime ideal of S−1R and that Φ is well-defined.
Let q be a prime ideal of S−1R. By Lemma 2.6.7, ι−1

S (q) is a prime ideal of R. Note that q is
proper and does not contain any element of the form s

t with s, t ∈ S since t
s · s

t = 1. Thus ι−1
S (q)

intersects S trivially. This shows that Ψ is well-defined.
We continue with the proof that Ψ◦Φ is the identity, i.e. ι−1

S (S−1p) = p for every prime ideal
p of R that does not intersect S. The inclusion p⊂ ι−1

S (S−1p) is trivial. The reverse inclusion can
be shown as follows. The set ι−1

S (S−1p) consists of all elements a ∈ R such that a
1 = b

s for some
b ∈ p and s ∈ S. This equation says that there is a t ∈ S such that tsa = tb. Since b ∈ p, we have
tsa = tb ∈ p. Since ts /∈ p, we have a ∈ p, as desired.

We continue with the proof that Φ◦Ψ is the identity, i.e. S−1ι−1
S (q) = q for every prime ideal

q of S−1R. The inclusion S−1ι−1
S (q)⊂ q is trivial. The reverse inclusion can be shown as follows.

Let a
s ∈ q. Then a

1 = s
1 · a

s ∈ q and a ∈ ι−1
S q. Thus a

s ∈ S−1ι−1
S (q), as desired. This concludes the

proof of the first claim of the proposition.
We continue with the proof that a prime ideal p of R with p∩S = /0 is a k-ideal if and only

if S−1p is a k-ideal. First assume that S−1p is a k-ideal and consider an equality a+ c = b with
a,b ∈ p. Then we have a

1 +
c
1 = b

1 with a
1 ,

b
1 ∈ S−1p. Since S−1p is a k-ideal, we have c

1 ∈ S−1p
and thus c ∈ p. This shows that p is a k-ideal.

Conversely, assume that p is a k-ideal and consider an equality a
s +

c
u = b

t with a
s ,

b
t ∈ S−1p.

This means that wtua+wstc = wsub for some w ∈ S. Since wtua and wsub are elements of the
k-ideal p, also wstc ∈ p. Since p is prime and wst /∈ p, we have c ∈ p and thus c

u ∈ S−1p, as
desired. This finishes the proof of the proposition.
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Residue fields

Let R be a semiring, p a prime ideal of R and S = R−p. Then S−1p is the complement of the
units of S−1R and therefore its unique maximal ideal.

Definition 2.7.6. Let R be a semiring and p a prime ideal of R. The residue field at p is the
semiring k(p) = Rp/c(S−1p) where S is the complement of p in R and c(S−1p) is the congruence
on Rp that is generated by S−1p.

Let p be a prime ideal of a semiring R. Then the residue field at p comes with a canonical
morphism R→ k(p), which is the composition of the localization map R→ Rp with the quotient
map Rp→ k(p). Note that the residue field k(p) can be the trivial semiring in case that p is not a
k-ideal. More precisely, we have the following.

Corollary 2.7.7. Let R be a semiring, p a prime ideal of R and S = R−p. Then the residue field
k(p) is a semifield if p is a k-ideal and trivial if not.

Proof. First assume that p is a prime k-ideal. Then p is the maximal prime ideal that does
not intersect S and thus m= S−1p is the unique maximal of S−1R. By Proposition 2.7.5, m is
a k-ideal. Thus the kernel of S−1R→ k(p) is m, which shows that k(p) is not trivial. Since
(S−1R)× = S−1R−m, we see that (S−1R)× → k(p)−{0} is surjective, which shows that all
nonzero elements of k(p) are invertible, i.e. k(p) is a semifield.

Next assume that p is not a k-ideal. By Proposition 2.7.5, m= S−1p is not a k-ideal, which
means that the kernel of S−1R→ k(p) is strictly larger than m and therefore contains a unit of
S−1R. This shows that k(x) must be trivial.

Corollary 2.7.8. Let R be a nontrivial semiring. Then there exists a morphism R→ k to a
semifield k.

Proof. By Exercise 2.6.10, R has a maximal k-ideal p. By Lemma 2.6.6, p is prime. By
Corollary 2.7.7, k(p) is a semifield, and the canonical morphism R→ k(p) verifies the claim of
the corollary.

Exercise 2.7.9. Let R be a semiring and p a prime k-ideal of R. Show that R/p is nontrivial and
without zero divisors and that k(p) is isomorphic to Frac(R/p). What happens if p is a prime
ideal that is not a k-ideal?
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Chapter 3

Monoids with zero

chapter last edited on
May 16, 2018

In this chapter, we introduce and investigate monoids with zero. As we will see that monoids
with zero behave like semirings in many aspects. In particular, most results of Chapter 2 have
an analogue for monoids with zero. We review these facts in the following and emphasize the
analogy with semirings by a similar formal structure of this chapter with Chapter 2. We will see,
though, that several facts and constructions are much simpler for monoids than for semirings.

3.1 The category of monoids with zero

Definition 3.1.1. A monoid with zero is a set A together with an associative and commutative
multiplication · : A×A→ A and two constants 0 and 1 such that 0 ·a = 0 and 1 ·a = a for all
a ∈ A. We often write ab for a ·b.

A morphism between monoids with zero A1 and A2 is a map f : A1→ A2 such that f (0) = 0,
f (1) = 1 and f (ab) = f (a) f (b). This defines the category Mon of monoids with zero.

Let A be a monoid with zero. A submonoid of A is a multiplicatively closed subset that
contains 0 and 1. The unit group of A is the subset A× of invertible elements of A.

Note that the multiplication of A restricts to A× and turns it into an abelian group. Note
further that the constants 0 and 1 of a monoid with zero A are uniquely determined by the
properties 0 ·a = 0 and 1 ·a = a. Sometimes, we take the liberty to omit an explicit description
of these constants and we call a monoid with zero simply a monoid if it clearly contains a
zero. Note, however, that the property f (0) = 0 of a morphism of monoids with zero is not
automatically implied by the other axioms; in other words, not every monoid morphism between
monoids with zero is a morphism of monoids with zero.

Example 3.1.2. Every semiring R is a monoid with zero if we omit the addition from the
structure. We write R• for the multiplicative monoid of R.

Given a (multiplicatively written) abelian semigroup A with unit 1, we obtain a monoid with
zero A0 = A∪{0} by adding an element 0 satisfying 0 ·a = 0 for all a ∈ A0.

The trivial monoid with zero {0 = 1} is a terminal object in Mon. The so-called field with
one element F1 = {0,1} is initial in Mon.

Exercise 3.1.3. Show that Mon is complete and cocomplete. The proof can be done in analogy to
the case of semirings, cf. Exercise 2.1.6. In particular, the product of monoids Ai is represented by
the Cartesian product ∏Ai and their coproduct is a union over finite tensor products over F1; the
equalizer of two morphisms f ,g : A→ B is represented by eq( f ,g) = {a ∈ A| f (a) = g(a)} and
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their coequalizer is the quotient of B by the congruence generated by the relations f (a)∼ g(a)
for a ∈ A.

Definition 3.1.4. A monoid with zero A is without zero divisors if for any a,b ∈ R, the equality
ab = 0 implies that a = 0 or b = 0. It is integral (or multiplicatively cancellative) if 0 6= 1 and
for any a,b,c ∈ R the equality ac = bc implies c = 0 or a = b.

Lemma 3.1.5. An integral monoid with zero is without zero divisors.

Proof. If R is integral and ab = 0, then ab = 0 = 0 ·b implies b = 0 or a = 0.

Note that as in the case of semirings, a nontrivial monoid with zero and without zero divisor
is in general not integral. An example of such a monoid is a semiring with the corresponding
properties, e.g. the multiplicative monoid T[T ]• of the tropical polynomial algebra T[T ].

3.2 Tensor products and free monoids with zero

Definition 3.2.1. Let fA : C→ A and fB : C→ B be two morphisms of monoids with zero. The
tensor product of A and B over C is the set

A⊗C B = A×B/ ∼

where the equivalence relation ∼ is generated by relations of the form ( fA(c)a,b)∼ (a, fB(c)b)
where a ∈ A, b ∈ B and c ∈ C. We denote the equivalence class of (a,b) by a⊗ b. The
multiplication of A⊗C B is defined by the formula

(a⊗b) · (a′⊗b′) = aa′⊗bb′.

Its zero is 0⊗0 and its one is 1⊗1. The tensor product A⊗C B comes with the canonical maps
ιA : A→ A⊗C B, sending a to a⊗1, and ιB : B→ A⊗C B, sending b to 1⊗b.

Exercise 3.2.2. Verify that A⊗C B is indeed a monoid with zero and that the canonical maps ιA
and ιB are morphisms.

Formulate and prove the usual properties of the tensor product: (1) The tensor product is the

colimit (or pushout) of the diagram A
fA←−C

fB−→ B; (2) every C-bilinear morphism from A×B
defines a unique morphism from A⊗C B.

Exercise 3.2.3. Let B be monoids with zero and A be a (multiplicatively written) abelian
semigroup with neutral element 1. Let A0 = A∪{0} be the associated monoid with zero; cf.
Example 3.1.2. Let F1→ A0 and F1→ B the unique morphisms from the initial object F1 into
A0 and B, respectively.

Show that the underlying set of B⊗F1 A0 is the smash product B∧A0, which is the quotient
of B×A0 by the equivalence relation generated by (0,a)∼ (b,0) for all a ∈ A0 and b ∈ B.

Let B[A] = B⊗F1 A0, let ιB : B→ B[A] be the canonical map and let ῑA : A→ B[A] be the
composition of the inclusion A→ A0 followed by the canonical map A0 → B[A]. Conclude
from Exercise 3.2.2 that B[A] = B⊗F1 A0 satisfies the following universal property: for every
morphism fB : B→ C of monoids with zero and every multiplicative map fA : A→ C with
fA(1) = 1, there is a unique morphism F : B[A]→C of monoids with zero such that fB = F ◦ ιB
and fA = F ◦ ῑA. Conclude that B[A] is the analogue of a semigroup algebra for monoids with
zero; cf. section 2.3.
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Definition 3.2.4. Given a monoid with zero A and a set {Ti}i∈I , the free monoid with zero
over A in {Ti} is the monoid with zero A[Ti]i∈I = A⊗F1 S0 where S = {∏T ei

i }(ei)∈
⊕

N is the
multiplicative semigroup of all monomials ∏T ei

i in the Ti.
If I = {1, . . . ,n}, then we write A[T1, . . . ,Tn] for A[Ti]i∈I . We write a∏T ei

i for a⊗∏T ei
i and

a for the element a∏T 0
i , which we call it a constant monomial of A[Ti]i∈I . We write aT

ei1
i1 · · ·T

ein
in

for a∏T fi
i with fik = eik for k = 1, . . . ,n and f j = 0 otherwise.

Exercise 3.2.5. Let A be a monoid with zero and {Ti}i∈I a set. Let ιA : A→ A[Ti] be the canonical
morphism of monoids with zero and ι0 : {Ti} → A[Ti] the canonical inclusion. Show that for
every morphism fA : A→ B of monoids with zero and every map f0 : {Ti}→ B, there is a unique
morphism f : A[Ti]→ B of monoids with zero such that fA = f ◦ ιA and f0 = f ◦ ι0.

Exercise 3.2.6. Let f : R1→ R2 be a morphism of semirings. Show that f is also a morphism
of the underlying monoids, which we denote by f • : R•1→ R•2. Show that this defines a functor
(−)• : SRings→Mon.

This functor has left adjoint, which can be described as follows. Given a monoid A with
zero 0A, we define A+ as the semiring N[A]/c(0A), i.e. the semigroup algebra of A over N
whose zero we identify with 0A. Show that a morphism f : A1 → A2 of monoids with zero
defines a semiring morphism f+ : A+

1 → A+
2 by linear extension. Show that this defines a functor

(−)+ : Mon→ SRings, which is left adjoint to (−)• : SRings→Mon, i.e. are bijections

HomMon(A,R•)
∼−→ HomSRings(A+,R)

for all monoids with zero A and every semirings R, which are functorial in A and R.

Exercise 3.2.7. Show that the multiplicative monoid N• of N is isomorphic to F1[Tp]p∈P where
P is the set of prime numbers in N.

3.3 Congruences of monoids

Definition 3.3.1. Let A be a monoid with zero. A congruence on A is an equivalence relation c
on A that is multiplicative, i.e. (a,b) and (c,d) in c imply (ac,bd) ∈ c for all a,b,c,d ∈ A.

Example 3.3.2. Let R be a semiring and c a congruence on R. Then c is also a congruence on
the monoid R•.

Exercise 3.3.3. Let k,n ∈ N. Show that the sets

cn =
{
(a,b) ∈ F1[T ]×F1[T ]

∣∣a = b or a,b ∈ {T k|k > n}∪{0}
}

and

ck,n =
{
(T m+rk,T m+sk) ∈ F1[T ]×F1[T ]

∣∣m,r,s ∈ N, and m> n or r = s = 0
}
∪
{
(0,0)

}

are congruences on the free monoid with zero F1[T ] in T over F1 for all k,n > 0. Show that
every congruence of F1[T ] is of this form.

Let c be a congruence on A. Similar to the case of congruences for semirings, we write
a ∼c b, or simply a ∼ b, to express that (a,b) is an element of c. The following proposition
shows that congruences define quotients of monoids with zero.
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Proposition 3.3.4. Let A be a monoid with zero and c be a congruence on A. Then the association
[a] · [b] = [ab] is well-defined on equivalence classes of c and turn the quotient A/c into a monoid
with zero [0] and neutral element [1].

The quotient map π : A→ A/c is a morphism of monoids with zero that satisfies the following
universal property: every morphism f : A→ B such that f (a) = f (b) whenever a∼c b factors
uniquely through π.

Proof. Given a ∼ a′ and b ∼ b′, we have ab ∼ a′b′. Thus the multiplication of A/c does not
depend on the choice of representative and is therefore well-defined. It follows immediately that
A is a monoid with zero [0] and neutral element [1] and that π a morphism of monoids with zero.

Let f : A→ B be a morphism such that f (a) = f (b) whenever a∼ b in c. For f to factor into
f ◦π for a morphism f : A/c→ B, it is necessary that f ([a]) = f ◦π(a) = f (a). This shows that
f is unique if it exists. Since a∼ b implies f (a) = f (b), we conclude that f is well-defined as a
map. The verification of the axioms of a morphism are left as an exercise.

Example 3.3.5. Let A be a monoid with zero and without zero divisors. Then c = {(a,b) ∈
A×A|a 6= 0 6= b}∪{(0,0)} is a congruence. The quotient A/c is isomorphic to F1.

Exercise 3.3.6. Describe the quotients F1[T ]/ck,n for k,n ∈ N where ck,n are the congruences
from Exercise 3.3.3.

Definition 3.3.7. Let f : A→ B be a morphism of monoids with zero. The congruence kernel of
f is the relation c( f ) = {(a,b) ∈ A×A| f (a) = f (b)} on A.

Lemma 3.3.8. The congruence kernel c( f ) of a morphism f : A→ B of monoids with zero is a
congruence on A.

Proof. That c= c( f ) is an equivalence relation follows from the following calculations: f (a) =
f (a) (reflexive); f (a) = f (b) implies f (b) = f (a) (symmetry); f (a) = f (b) and f (b) = f (c)
imply f (a) = f (c) (transitive). Multiplicativity follows from: f (a) = f (b) and f (c) = f (d)
imply f (ac) = f (a) · f (c) = f (b) · f (d) = f (bd). This shows that c is a congruence.

As a consequence of this lemma, we see that for a monoid with zero A, the associations
{

congruences on A
}
←→

{
quotients of A

}

c 7−→ A→ A/c
c(π) 7−→ π : A� B

are mutually inverse bijections. We will see in section 3.4 that we have a similar discrepancy
between quotients and ideals as in the case of semirings. In so far, one has to work with
congruences when one wants to describe quotients of monoids with zero.

Lemma 3.3.9. Let A be a monoid with zero and S ⊂ A×A a subset. Then there is a smallest
congruence c = 〈S〉 containing S. The quotient map π : A→ A/〈S〉 satisfies the following
universal property: every morphisms f : A→ B with the property that f (a) = f (b) whenever
(a,b) ∈ S factors uniquely through π.

Proof. It is readily verified that the intersection of congruences is again a congruence. As
a consequence, the intersection of all congruences containing S is the smallest congruence
containing S.

Given any morphism f : A→ B with the property that f (a) = f (b) whenever (a,b) ∈ S, then
the congruence kernel c( f ) must contain S and thus c = 〈S〉. Using Proposition 2.4.4, we see
that f factors uniquely through π.
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This lemma shows that we can construct new monoids with zero from known ones by
prescribing a number of relations: let A be a monoid with zero and {ai ∼ bi} a set of relations
on A, i.e. S = {(ai,bi)} is a subset of A×A. Then we define A/〈ai ∼ bi〉 as the quotient monoid
A/〈S〉.
Example 3.3.10. In A = F1[T ]/〈T 2 ∼ T 〉, we have [T 2+i] = [T 1+i] for all i> 0, thus A consists
of the residue classes [0], [1] and [T ], and [T ]2 = [T ] is an idempotent element of A.

Exercise 3.3.11. Let A be a monoid with zero and c a congruence on A. Let c+ be the congruence
on the semiring A+ that is generated by c⊂ A×A⊂ A+×A+. Show that A+/c+ is isomorphic
to (A/c)+.

3.4 Ideals

Definition 3.4.1. Let A be a monoid with zero. An ideal of A is a subset I of A such that 0 and
ab are elements of I for all a ∈ I and b ∈ A. Let f : A→ B be a morphism of monoids with zero.
The (ideal) kernel of f is the inverse image ker( f ) = f−1(0) of 0.

Let S be a subset of A. The ideal generated by S is the set 〈S〉= {as ∈ A|a ∈ A,s ∈ S∪{0}}.
The congruence generated by S is the congruence c(S) generated by {(a,0)|a ∈ S}.

Note that 〈S〉 is the smallest ideal of A containing S. In particular, we have 〈 /0〉= {0}. Note
further that the congruence generated by S is the set

c(S) =
{
(a,b)

∣∣a,b ∈ 〈S〉
}
∪
{
(a,a)

∣∣a ∈ A
}
.

Exercise 3.4.2. Describe all ideals of F1[T ] and of N•. Determine which congruences on F1[T ]
are geneerated by ideals, cf. Exercise 3.3.3.

Proposition 3.4.3. The kernel ker( f ) of a morphism of f : A→ B is an ideal and every ideal
appears as a kernel. More precisely, if I is an ideal of A and c= c(I) is the congruence generated
by I, then I is the kernel of π : A→ A/c and π(a) = π(b) if and only if a,b ∈ I or a = b.

Proof. We begin with the verification that ker( f ) is an ideal. Clearly 0 ∈ ker( f ). Let a ∈ ker( f )
and b ∈ R. Then f (ab) = f (a) f (b) = 0 · f (b) = 0 and ab ∈ ker( f ). Thus ker( f ) is an ideal.

It is easily verified that c= c(I) has the explicit description

c =
{
(a,b) ∈ A×A |a,b ∈ I or a = b

}
.

It follows that π(a) = π(b) if and only if a,b∈ I or a = b, and that ker f = {a∈ A|π(a) = 0}= I,
as claimed.

Remark 3.4.4. As a consequence of Proposition 3.4.3, we see that the quotient A/c(I) of A by
an ideal I contracts all elements of the ideal I, but does not identify any other elements. In other
words, A/c(I) stays in bijection with {0}∪ (A− I).

We summarize: with a congruence c on A, we can associate the kernel of the projection
πc : A→ A/c, which is an ideal; with an ideal I, we can associate the congruence c(I) generated
by I. We have that the kernel of A→ A/c(I) is I and the congruence c(kerπc) is contained in c,
but in general not equal to c. This leads to the following picture.

“kernels” “quotients”
{

ideals of A
} {

congruences on A
}
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Exercise 3.4.5. Compare the ideals of F1[T ] with the congruences on F1[T ]; cf. Exercises 3.3.3
and 3.4.2. Do the same exercise for F1[T1,T2].

3.5 Prime ideals

Definition 3.5.1. Let A be a monoid with zero. An ideal I of A is proper if it is not equal to A. It
is maximal if it is proper and if I ⊂ J implies I = J for any other proper ideal of A. It is prime if
its complement S = A− I is a multiplicative subset of R.

Let A be a monoid with zero. Then m = A−A× is an ideal of A, which is necessarily the
unique maximal ideal of A. This shows that every monoid with zero A is local, i.e. A contains a
unique maximal ideal m and it satisfies A = A×∪m.

Exercise 3.5.2. Show that for every subset J ⊂ {1, . . . ,n}, the ideals

〈Ti|i ∈ J〉 = {0} ∪
{ n

∏
i=1

T ei
i ∈ F1[T1, . . . ,Tn]

∣∣ei > 0 for some i ∈ J
}

of F1[T1, . . . ,Tn] are prime ideals and that every prime ideal of F1[T1, . . . ,Tn] is of this form.

Lemma 3.5.3. Let A be a monoid with zero and I an ideal of A. Then I is prime if and only if
A/I is nontrivial and without zero divisors, and I is maximal if and only if A/I = (A/I)×∪{[0]}.

Proof. The ideal I is prime if and only if for all a,b ∈ A, ab ∈ I implies that a ∈ I or b ∈ I.
Passing to the quotient A/I, this means that [ab] = [0] implies [a] = [0] or [b] = [0] where we use
that the kernel of A→ A/I is I, cf. Proposition 3.4.3. This latter condition is equivalent to A/I
being nontrivial and without zero divisors.

As observed above, I is maximal if and only if I = A−A×. In this case, A/I is isomorphic
to (A×)0 = A×∪{0} and thus satisfies A/I = (A/I)×∪{[0]}. Conversely, if [a] · [b] = 1 in A/I,
then ab = 1 in A since [a] 6= [0] 6= [b] and thus [a] = {a} and [b] = {b} by Proposition 3.4.3.
Thus if A/I = (A/I)×∪{[0]}, then I = ker(A→ A/I) = A−A×.

Lemma 3.5.4. Every maximal ideal is a prime ideal.

Proof. This follows immediately from the characterization of the unique maximal ideal as the
complement of the unit group and the fact that the product of non-units is a non-unit.

Lemma 3.5.5. Let f : A→ B be a morphism of monoids with zero and I an ideal of B. Then
f−1(I) is an ideal of A. If I is prime, then f−1(I) is prime.

Proof. We verify that f−1(I) is an ideal. Obviously, it contains 0. If a ∈ f−1(I) and b ∈ A, then
f (ab) = f (a) f (b) ∈ I and ab ∈ f−1(I). This shows that f−1(I) is an ideal.

Assume that I is prime, i.e. S = B− I is a multiplicative set. Then f−1(S) = A− f−1(I) is a
multiplicative set of A and thus f−1(I) is a prime ideal of A.

Remark 3.5.6. Similar to the case of semirings, there exist two concepts of prime congruences
for monoids with zero. Namely, a congruence c on a monoid with zero A is a weak prime
congruence on A if A/c is nontrivial and without zero divisors, and c is a strong prime congruence
on A if A/c is integral.



3.6. Localizations 33

3.6 Localizations

Definition 3.6.1. Let A be a monoid with zero and S⊂ A be a multiplicative subset of A, i.e. a
subset that contains 1 and is closed under multiplication. The localization of A at S is the quotient
S−1A of S×A by the equivalence relation that identifies (s,a) with (s′,a′) whenever there is a
t ∈ S such that tsa′ = ts′a in A. We write a

s for the equivalence class of (s,a). The multiplication
of S−1A is defined by the formula a

s · a′
s′ = aa′

ss′ . The zero of S−1A is 0
1 and its one is 1

1 .
We write A[h−1] for S−1A if S = {hi}i∈N for an element h∈ A and call A[h−1] the localization

of A at h. We write Ap for S−1A if S = A−p for a prime ideal p of A and call Ap the localization
of A at p.

If I is an ideal of A, then we write S−1I for the ideal of S−1A that is generated by {a
1 |a ∈ I}.

Lemma 3.6.2. Let A be a monoid with zero, I an ideal of A and S a multiplicative subset of A.
Then

S−1I =
{ a

s ∈ S−1A
∣∣a ∈ I,s ∈ S

}
.

Proof. It is clear that S−1I contains the set {a
1 |a ∈ I} of generators of S−1I. If we have proven

that the set IS = {a
s |a ∈ I,s ∈ S} is an ideal, then it follows that it contains S−1I. The reverse

inclusion follows from the observation that for a
s ∈ IS, we have a

s =
1
s · a

1 ∈ S−1I.
We are left with showing that IS is an ideal. It obviously contains 0

1 . Given a
s ∈ IS and

b
t ∈ S−1A, then a

s · b
t =

ab
st ∈ IS since ab ∈ I. This verifies that IS is an ideal of S−1I and finishes

the proof of the lemma.

Exercise 3.6.3. Let A be a monoid with zero and S a multiplicative subset of A. Show that the
map ιS : A→ S−1A, defined by ιS(a) = a

1 , is a morphism of monoids with zero that maps S
to the units of S−1A. Show that it satisfies the usual universal property of localizations: every
morphism f : A→ B of monoids with zero that maps S to the units of B factors uniquely through
ιS. Show that ιS is an epimorphism.

Proposition 3.6.4. Let A be a monoid, S a multiplicative subset of A and ιS : A→ S−1A the
localization morphism. Then the maps

{
prime ideals p of A with p∩S = /0

}
←→

{
prime ideals of S−1A

}

p
Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections.

Proof. To begin with, we verify that both Φ and Ψ are well-defined. Let p be a prime ideal of A
such that p∩S = /0. Then S−1p= {a

s |a ∈ p,s ∈ S} by Lemma 3.6.2. Consider a
s ,

b
t ∈ S−1A such

that a
s · b

t = ab
st ∈ S−1p, i.e. ab ∈ p. Then a ∈ p or b ∈ p and thus a

s ∈ S−1p or b
t ∈ S−1p. This

shows that S−1p is a prime ideal of S−1A and that Φ is well-defined.
Let q be a prime ideal of S−1A. By Lemma 3.5.5, ι−1

S (q) is a prime ideal of A. Note that q is
proper and does not contain any element of the form s

t with s, t ∈ S since t
s · s

t = 1. Thus ι−1
S (q)

intersects S trivially. This shows that Ψ is well-defined.
We continue with the proof that Ψ◦Φ is the identity, i.e. ι−1

S (S−1p) = p for every prime ideal
p of A that does not intersect S. The inclusion p⊂ ι−1

S (S−1p) is trivial. The reverse inclusion can
be shown as follows. The set ι−1

S (S−1p) consists of all elements a ∈ A such that a
1 = b

s for some
b ∈ p and s ∈ S. This equation says that there is a t ∈ S such that tsa = tb. Since b ∈ p, we have
tsa = tb ∈ p. Since ts /∈ p, we have a ∈ p, as desired.
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We continue with the proof that Φ◦Ψ is the identity, i.e. S−1ι−1
S (q) = q for every prime ideal

q of S−1A. The inclusion S−1ι−1
S (q)⊂ q is trivial. The reverse inclusion can be shown as follows.

Let a
s ∈ q. Then a

1 = s
1 · a

s ∈ q and a ∈ ι−1
S q. Thus a

s ∈ S−1ι−1
S (q), as desired. This concludes the

proof of the proposition.

Residue fields

Let A be a monoid with zero, p a prime ideal of A and S = A−p. Then S−1p is the complement
of the units of S−1A and therefore the unique maximal ideal of S−1A.

Definition 3.6.5. Let A be a monoid with zero and p a prime ideal of A. The residue field at p is
the monoid with zero k(p) = Ap/c(S−1p) where S is the complement of p in A and c(S−1p) is
the congruence on Ap that is generated by S−1p.

Let p be a prime ideal of A. Then the residue field at p comes with a canonical morphism
A→ k(p), which is the composition of the localization map A→ Ap with the quotient map
Ap→ k(p).

Corollary 3.6.6. Let A be a monoid with zero, p a prime ideal of A and S = A−p. Then k(p) is
nontrivial and k(p)× = k(p)−{0}.

Proof. Note that p is the maximal prime ideal that does not intersect S. By Proposition 3.6.4,
m= S−1p is the unique maximal of S−1A. Thus the kernel of S−1A→ k(p) is m, which shows that
k(p) is nontrivial. Since (S−1A)× = S−1A−m, we see that (S−1A)×→ k(p)−{0} is surjective,
which shows that all nonzero elements of k(p) are invertible.
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Blueprints

chapter last edited on
May 16, 2018

A blueprint can be described as a hybrid of a monoid with zero and a semiring. Blueprints
continue sharing certain properties with rings in the same way as monoids and semirings do, but
in other aspect the deviation from rings increases. In this section, we will discuss the aspects of
blueprints that will be relevant for this text.

Blueprints were first introduced by the author in [Lor12]. Note that the definition of a
blueprint in these notes is more restrictive than the original definition. Namely, the definition that
we use in this text, as most other sources on blueprints do, correspond to proper blueprints with
zero in [Lor12]. As a complementary reading to this chapter, the reader might want to consider
the overview papers [Lor16] and [Lor18].

4.1 The category of blueprints

Definition 4.1.1. A blueprint is a pair B = (B•,B+) of a semiring B+ and a multiplicative subset
B• of B+ that contains 0 and spans B+ as a semiring. A morphism of blueprints f : B→C is
a semiring morphism f+ : B+→C+ with f (B•) ⊂C•. We denote the restriction of f+ to the
respective multiplicative subsets by f • : B•→C•. We denote the category of blueprints by Blpr.

Let B = (B•,B+) be a blueprint. The ambient semiring of B is B+ and the underlying monoid
of B is B•. We write a ∈ B for a ∈ B• and S⊂ B for S⊂ B•. The unit group of B is B× = (B•)×.
A blue field is a blueprint B with B× = B−{0}.

Note that this definition yields tautologically a functor (−)+ : Blpr→ SRings. Note further
that the underlying monoid B• of a blueprint B is a monoid with zero and given a morphism
of blueprints f : B→C, the map f • : B•→C• is a morphism of monoids with zero. Thus we
obtain a functor (−)• : Blpr→Mon.

Finally note that a morphism f : B→C of blueprints is already determined by f • : B•→C•

since B• spans B+ as a semiring. This allows us to describe a morphism f : B→C of blueprints
in terms of the monoid morphism f • : B•→C•.

Example 4.1.2. Some first examples of blueprints are the following:

• {0,1} ⊂ N, which is an initial object of Blpr;

• {0} ⊂ {0}, which is a terminal object of Blpr;

• {0,±1} ⊂ Z;

• [0,1]⊂ R>0;

35
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• {aT e1
1 · · ·T en

n }a∈R,e1,...,en∈N ⊂ R[T1, . . . ,Tn] where R is a semiring.

Note that we will denote ({0,1},N) by F1, cf. section 4.2, ({0,±1},Z) by F12 , cf. Example
4.4.4 and the last blueprint of this list by Rblue[T1, . . . ,Tn], cf. section 4.3.

Definition 4.1.3. Let B be a blueprint. A B-algebra is a blueprint C together with a blueprint
morphism ιC : B→C. Often we write only C for a B-algebra without mentioning ιC explicitly.
A morphism between B-algebras C and D or a B-linear morphism is a blueprint morphism
f : C→ D such that ιD = f ◦ ιC. This defines the category AlgB of B-algebras. We denote the
sets of B-linear morphisms from C to D by HomB(C,D).

Let C and D be B-algebras. Then there is a morphism α : C•⊗B• D•→ (C+⊗B+ D+)• of
monoids with zero that sends c⊗d to c⊗d. We define the tensor product of C and D over B as
the blueprint C⊗B D = (imα•,C+⊗B+ D+).

Exercise 4.1.4 (Tensor products). Show that C⊗B D is indeed a blueprint. Describe the canonical
inclusions C→C⊗B D and D→C⊗B D. Formulate and prove the usual properties of the tensor
product: (1) The tensor product is the colimit (or pushout) of the diagram C

ιC←−C ιD−→ D; (2)
every B-bilinear morphism from C×D defines a unique morphism from C⊗B D.

Let f : B→C be a blueprint morphism. Then the precomposition with f defines a functor
AlgC→ AlgB, which is called the restriction of scalars. Show that −⊗B C defines a left adjoint
AlgB→ AlgC to the restriction of scalars.

Exercise 4.1.5 (Limits and colimits). Show that the category of blueprints is complete and
cocomplete. More precisely, show the following assertions.

Let {Bi} be a family of blueprints. Then there is a canonical morphism α+ : (∏B•i )
+→∏B+

i
of semirings. Define ∏Bi = (∏B•i , imα+) and describe the canonical projections π j : ∏Bi→ B j.
Show that ∏Bi is a product of the Bi.

Similarly, there is a canonical morphism α• :
⊗

B•i → (
⊗

B+
i )
• of monoids with zero. Define⊗

Bi = (imα•,
⊗

B+
i ) and describe the canonical inclusions ι j : B j→

⊗
Bi. Show that

⊗
Bi is

a coproduct of the Bi.
Let f ,g : B→ C be two blueprint morphisms. Then there is a canonical morphism α+ :

eq( f •,g•)+→ eq( f+,g+) of semirings. Define eq( f ,g) = (eq( f •,g•), imα+), which comes
with a canonical inclusion eq( f ,g)→ B. Show that eq( f ,g) is an equalizer of f and g.

Similarly there is a canonical morphism α• : coeq( f •,g•)→ coeq( f+,g+)• of monoids
with zero. Define coeq( f ,g) = (imα•,coeq( f+,g+)), which comes with a canonical projection
C→ coeq( f ,g). Show that coeq( f ,g) is a coequalizer of f and g.

Exercise 4.1.6 (Monomorphisms, isomorphisms and epimorphisms). Let f : B → C be a
blueprint morphism. Show that f is a monomorphism if and only if f • is injective; f is
an isomorphism if and only if both f • and f+ are bijective; f is an epimorphisms if f+ is
surjective. Give an example of an epimorphism f for which f+ is not surjective.

Exercise 4.1.7 (Axiomatic blueprints). There is a different but equivalent approach to blueprints.
This alternative viewpoint has been used in previous texts about blueprints, as in [Lor12] and
[Lor16]. In this exercise, we explain the connection to this alternative definition.

We define an axiomatic blueprint as a pair B = (A,R) of a monoid with zero A together with
a preaddition R, which is an equivalence relation on N[A] that satisfies for all x,y,z, t ∈ N[A] and
a,b ∈ A that

(1) x≡ y and z≡ t implies x+ z≡ y+ t and xz≡ yt,
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(2) a≡ b implies a = b as elements of A, and

(3) 0A ≡ 0N[A], i.e. the zero of A is equivalent to zero of N[A],

where we write x ≡ y for (x,y) ∈ R. We also write B• for A and say that x ≡ y holds in B if
(x,y) ∈ R. A morphism between axiomatic blueprints B1 and B2 is a morphism f : B•1→ B•2 of
monoids with zero such that for all ai,b j ∈ B•1 with ∑ai ≡∑b j in B1, we have ∑ f (ai)≡∑ f (b j)
in B2.

Let B = (A,R) be an axiomatic blueprint. Show that R is a congruence on N[A] and denote
the semiring N[A]/R by B+. Show that the natural map A→ N[A]→ B+ is injective and defines
a blueprint (B•,B+). Conversely, we can associate with a blueprint (B•,B+) the axiomatic
blueprint (B•,R) where R is the congruence kernel of the quotient map N[B•]→ B+.

Show that every morphism f : B1→ B2 of axiomatic blueprints induces a semiring morphism
f+ : B+

1 → B+
2 , which satisfies f+(B•1)⊂ B•2. Show that this defines an equivalence between the

category of axiomatic blueprints with Blpr.

Basic facts about reflective subcategories

In the following sections, we will encounter several reflective and coreflective subcategories of
Blpr. The following exercises contain the definition of a (co)reflective category and discuss its
main properties. Though reflective subcategories is a standard topic in category theory, most
expositions are either incomplete or use more advanced results from category theory than is
necessary for our purposes. Accessible references are sections 3.4 and 3.5 in Borceux’s book
[Bor94] and section IV.3 in MacLane’s book [Mac71].

Exercise 4.1.8. Let C be a category. A reflective subcategory of C is a full subcategory D

such that the inclusion functor ι : D→ C has a left adjoint ρ : C→D, i.e. there are bijections
Φ : HomC(C, ι(D))→ HomD(ρ(C),D) for every C in C and D in D that are functorial in C and
D. The functor ρ is called a reflection of C in D.

Show that ρ ◦ ι is isomorphic to the identity functor on D. More precisely, show that the
counit of the adjunction εD = Φ(idι(D)) : ρ◦ ι(D)→ D is an isomorphism for every D in D. In
other words, this shows that if ρ is a reflection of a full embedding ι : D→ C of categories, then
ρ is a left inverse of ι.

Conversely, assume that ι : D→ C is an arbitrary functor of categories that has a left adjoint
and left inverse ρ : C→D. Show that ι is fully faithful and that the image of ι is a reflective
subcategory of C.

Exercise 4.1.9. Let C be a complete and cocomplete category and ι : D → C a reflective
subcategory with reflection ρ. Let ∆ be a diagram in D, i.e. a family of objects and morphisms
in D. Denote by ι(∆) the diagram in C that results from ∆ by applying ι to each object and
morphism in ∆.

Show that ρ
(

lim ι(∆)
)

is a limit lim∆ of ∆ in D and that ι(lim∆) is naturally isomorphic to
lim ι(∆). Show that ρ

(
colim ι(∆)

)
is a colimit colim∆ of ∆ in D. Find an example where the

natural morphism colim ι(∆)→ ι(colim∆) is not an isomorphism.

Exercise 4.1.10. Let C be a category. A coreflective subcategory of C is a full subcategory D

such that the inclusion functor ι : D→ C has a right adjoint ρ : C→D. Formulate and prove the
analogous properties from Exercises 4.1.8 and 4.1.9.
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4.2 Semirings and monoids as blueprints

Let R be a semiring. Then we define the associated blueprint as Rblue = (R,R), thus (Rblue)• =
(Rblue)+ = R. Every morphism f : R→ S of semirings is tautologically a morphism of blueprints,
which we denote by f blue : Rblue→ Sblue. This yields a functor

(−)blue : SRings −→ Blpr .

Lemma 4.2.1. The functor (−)+ : Blpr→ SRings is a left adjoint and left inverse to (−)blue :
SRings→ Blpr. Thus we can identify SRings with a reflective subcategory of Blpr.

Proof. By its very definition, it is clear that (−)+ is a left inverse to (−)blue. Let B be a
blueprint and R a semiring. A blueprint morphism f : B→ Rblue is a semiring morphism
f+ : B+→ (Rblue)+ such that f+(B•)⊂ (Rblue)• = R. Since the latter condition is vacuous, we
obtain a natural bijection Hom(B,Rblue)→Hom(B+,R), which shows that (−)+ is a left adjoint
to (−)blue.

This allows us to consider any semiring as a blueprint. In particular, we consider the natural
numbers N, the Boolean numbers B, the tropical numbers T and their integers OT, as well as Z,
Q, R and C as blueprints in the following.

Remark 4.2.2. We warn the reader at this point that coproducts and free algebras are not
preserved by the inclusion (−)blue : SRings→ Blpr. For instance if R is a semiring and S and
T are two R-algebras, then (S⊗R T )blue is in general not isomorphic to Sblue⊗Rblue T blue. But in
accordance with Exercise 4.1.9, there is a canonical isomorphism

(
Sblue⊗Rblue T blue

)+→ S⊗R T
where the former tensor product is a tensor product of blueprints and the latter tensor product is
a tensor product of semirings.

There is a similar discrepancy between the construction of free algebras; cf. section 4.3 for
more details. To avoid confusion, we shall often add a symbol “+” to make clear that we refer to
the corresponding construction in SRings; for instance, we write S⊗+R T and R[T1, . . . ,Tn]

+.

Exercise 4.2.3. Show that Rings is a reflective subcategory of SRings. More precisely, show
that −⊗NZ is a left adjoint of the inclusion functor ι : Rings→ SRings.

Conclude that the composition (−)blue ◦ ι : Rings→ SRings→ Blpr has a left adjoint and
left adjoint ρ. Give an explicit description of ρ.

Let A be a monoid with zero 0A and A+ = N[A]/c(0A) the associated semiring, cf. Exercise
3.2.6. Then we define the associated blueprint as Ablue = (A,A+). Given a morphism f : A→ B
of monoids with zeros, we obtain a morphism of semirings f+ : A+→ B+ by linear extension,
cf. Exercise 3.2.6. We define f blue : Ablue→ Bblue as f+ : A+→ B+. This yields a functor

(−)blue : Mon −→ Blpr .

Lemma 4.2.4. The functor (−)• : Blpr→Mon is a right adjoint and left inverse of (−)blue :
Mon→ Blpr. Thus we can identify Mon with a coreflective subcategory of Blpr.

Proof. Since we can recover a monoid with zero A from Ablue as (Ablue)• and a morphism
f : A→ B from f blue as f = ( f blue)•, we see that (−)• is a left inverse of (−)blue.

Let A be a monoid with zero and B a blueprint. A blueprint morphism f : Ablue→ B deter-
mines a morphism f • : A = (Ablue)•→ B• of monoids with zero, and f is uniquely determined
by f •. This defines an injection Hom(Ablue,B)→ Hom(A,B•), which is a surjective since every
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morphism g : A→ B• of monoids with zero extends to a semiring morphism g+ : A+→ B+. We
conclude that (−)• is a right adjoint of (−)blue.

This allows us to consider every monoid as a blueprint, and we carry over the notation that
we have used for monoids. In particular, we have F1 = ({0,1},N).

In contrast to the situation of the inclusion SRings→ Blpr, the inclusion Mon→ Blpr
preserves colimits and free algebras, but not limits. For example, the product A×B of two
monoids with zeros A and B in Mon is evidently a monoid with zero. However, the product
Ablue×Bblue in Blpr is the blueprint (A×B,A+×B+), and the semiring morphism (A×B)+→
A+×B+ induced by the identity on A×B is not an isomorphism if A and B are nontrivial. For
instance, the elements (0A,1B)+(1A,0B) and (1A,1B) have the same image.

4.3 Free algebras

Definition 4.3.1. Let B be a blueprint and A a monoid with zero. The monoid algebra of A over
B is the blueprint

B[A] = B⊗F1 Ablue =
(

B•⊗F1 A,B+⊗+N A+
)
.

Let {Ti}i∈I be a set. The free algebra in {Ti}i∈I over B is the blueprint B[Ti]i∈I = B[A] for
A = F1[Ti]i∈I . We write B[T1, . . . ,Tn] if I = {1, . . . ,n}.

Note that the monoid algebra B[A] is a B-algebra with respect to the inclusion B→ B[A] send-
ing a to a⊗1A. Note that if R is a semiring and n> 1, then the monoid algebra Rblue[T1, . . . ,Tn]
is not equal to the blueprint associated with the polynomial semiring R[T1, . . . ,Tn]. But there is a
natural isomorphism

(
Rblue[T1, . . . ,Tn]

)+→ R[T1, . . . ,Tn], in accordance with Lemma 4.2.1 and
Exercise 4.1.9.

Exercise 4.3.2. Formulate and prove the universal properties for B[A] and B[Ti].

Example 4.3.3. Let R be a semiring. As a blueprint, the free R-algebra in T1, . . . ,Tn is

R[T1, . . . ,Tn] =
(
{aT e1

1 · · ·T en
n }a∈R,e1,...,en∈N, R[T1, . . . ,Tn]

+
)
.

Exercise 4.3.4. Show that F1[T1, . . . ,Tn]
+ = N[T1, . . . ,Tn]

+.

4.4 Quotients and congruences

Definition 4.4.1. Let B be a blueprint. A congruence on B is a congruence on the ambient
semiring B+. Let c be a congruence on B and π : B+→ B+/c the quotient map. The quotient of
B by c is the blueprint B�c= (π(B•),B+/c).

The congruence kernel of a blueprint morphism f : B→C is the congruence kernel c( f+)
of the semiring morphism f+ : B+→C+. A quotient of a blueprint B is a class of surjective
blueprint morphisms f : B→C, i.e. f (B•) =C•, where two surjection f : B→C and f ′ : B→C′

are equivalent if there is an isomorphism g : C→C′ such that f ′ = g◦ f .
Given a blueprint B and a subset S = {(xi,yi)} of B+×B+, we denote by 〈S〉= 〈xi ≡ yi〉 the

congruence on B+ generated by S.
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Note that B�c is indeed a blueprint: by Proposition 2.4.4, B+/c is a semiring; it is obvious
that π(B•) is a multiplicative subset of B+/c that contains 0 and 1 and spans B+/c. Note further
that the quotient map π : B→ B�c is a morphism of blueprints, which satisfies π+(x) = π+(y)
whenever x∼c y. By Lemma 2.4.7, the congruence kernel of a blueprint morphism f : B→C is
a congruence on B.

Proposition 4.4.2. Let S = {(xi,yi)} be a subset of B+×B+ and c = 〈S〉 the congruence gen-
erated by S. Let π : B→ B�c be the quotient map. Given a morphism f : B→ C such that
f (xi) = f (yi) for all i, there is a unique morphism f̄ : B�c→C such that f = f̄ ◦π.

Proof. By Lemma 2.4.8, there is a unique semiring morphism g : (B�c)+ = B+/c→C such
that f+ = g◦π+. Since g

(
(B�c)•

)
= f (B•) and f (B•)⊂C•, the semiring morphism g defines

a blueprint morphism f̄ : B�c→C with f̄+ = g that satisfies f = f̄ ◦π.

Proposition 4.4.3. The associations

{
congruences on B

} 1:1←→
{

quotients of B
}

c
Φ7−→ B→ B�c

c(π)
Ψ 7−→ π : B�C

are mutually inverse bijections.

Proof. It is clear that c is the congruence kernel of B→ B�c. If π : B→ C is a surjective
morphism of blueprints, then π+ : B+ → C+ is surjective and C• = π+(B•). Thus C = B�c
where c is the congruence kernel of π.

The free algebra construction and the characterization of quotients of blueprints by congru-
ences allows for a convenient notation for blueprints: given any blueprint B, e.g. a monoid or a
semiring, and any subset {( fi,gi)} of B[T1, . . . ,Tn]

+×B[T1, . . . ,Tn]
+, we can define the blueprint

B[T1, . . . ,Tn]�〈 fi ≡ g j〉.

Example 4.4.4 (Cyclotomic extensions of F1). Let µn be a cyclic group of order n with generator
ζn. The n-th cyclotomic extension of F1 is the blueprint

F1n = F1[µn]�〈∑n/d
i=1 ζ

di
n |d < n is a divisor of n〉.

For n> 2, we can identify ζn with a primitive n-th root of unity in the cyclotomic number field
Q[ζn], which yields an isomorphism of the ambient semiring F+

1n with the ring of integers of
Q[ζn]. For n = 1, we have F11 = F1 and for n = 2, we have that −1 = ζ2 is an additive inverse
of 1 and F12 = {0,±1}�〈1+(−1)≡ 0〉.

Exercise 4.4.5. Let n> 1 and k a field. If the characteristic of k does not divide n, then assume
that k contains all n-th roots of unity. If k is of finite characteristic p and pk is the highest power
of p dividing n, i.e. m = n/pk is not divisible by p, then assume that k contains all m-th roots of
unity. Show that there exists a morphism F1n → k of blueprints and that for any two morphisms
f ,g : F1n → k, there is an automorphism σ : k→ k and a unique automorphism τ : F1n → F1n

such that g = σ ◦ f = f ◦ τ .
Show that this defines a group morphism Aut(k)→ Aut(F1n) from the group of field auto-

morphism of k to the group of blueprint automorphisms of F1n , which sends σ to τ . Determine
the image G of Aut(k)→ Aut(F1n) and the fixed blue subfield of F1n by G.
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Let n be even. Show that F12 is fixed by every automorphism of F1n . Define Gal(F1n/F12) =
Aut(F1n). Show that there is a Galois correspondence between the subgroups of Gal(F1n/F12)
and the blue subfields of F1n containing F12 .

Example 4.4.6. Let k be a ring and R be a k-algebra, i.e. a ring homomorphism k→ R. A
representation R' k[T1, . . . ,Tn]

+/I defines the associated blueprint

k[T1, . . . ,Tn]�〈x≡ y|x− y ∈ I〉 =
({

[aT e1
1 · · ·T en

n ]
}
,R
)

where [aT e1
1 · · ·T en

n ] is the class of aT e1
1 · · ·T en

n ∈ k[T1, . . . ,Tn] in R = k[T1, . . . ,Tn]/I.

Exercise 4.4.7. Let B = F1[T1, . . . ,T4]�〈T1T4 ≡ T2T3+1〉. Describe a bijection of the morphism
set Hom(B,N) with the set of 2×2-matrices with coefficients in N and determinant 1.

Exercise 4.4.8. Show that F1[T2,T−2]�〈T2 ≡ 1+1,T2+T−2 ≡ 0〉 is isomorphic to (2Z∪{1},Z).
Find a representation of (Z,Z) as A�c where A is a monoid with zero and c a congruence on A+.

Exercise 4.4.9. Let B be a blueprint, c a congruence on B and π : B→ B�c the quotient map.
Show that the restriction c• of c to B• is a congruence on the monoid with zero B• and that
(B�c)• ' B•/c•. Conversely, show that every congruence c• on the underlying monoid B•

determines a congruence c on B that is minimal among all congruences on B whose restriction to
B• is c•.

Conclude that a congruence c on a blueprint B is the same as a pair (c•,c+) of a congruence
c• on the underlying monoid B• and a congruence c+ on the ambient semiring B+ such that the
inclusion B•→ B+ induces an injection B•/c• ↪→ B+/c+. In so far, we obtain the following
picture:

{
congruences on B•

} {
congruences on B

} {
congruences on B+

}1:1

4.5 Reflective subcategories

The following properties characterize important subclasses of blueprints.

Definition 4.5.1. A blueprint B is

• without zero divisors if B• is without zero divisors;

• integral (or multiplicatively cancellative) if B• is integral;

• with (additive) inverses or with −1 if B• contains an element −1 that is an additive inverse
of 1 in B+;

• (additively) cancellative if B+ is cancellative;

• (additively) idempotent if B+ is idempotent;

Lemma 4.5.2. Let B be a blueprint.

(1) If 0 = 1 in B, then B is trivial, i.e. B• = B+ = {0}.
(2) If B is integral, then B is without zero divisors.

(3) B is cancellative if and only if B+ embeds into a ring.
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(4) If B is with −1, then B+ is a ring. In particular, B is cancellative. Moreover, (−1)2 = 1
and −a = (−1) ·a is an additive inverse of a for every a ∈ B.

(5) B is with −1 if and only if there is a morphism F12 → B. The morphism F12 → B is unique.

(6) B is idempotent if and only if there is a morphism B→ B. The morphism B→ B is unique.

(7) If B is idempotent and cancellative, then it is trivial.

Proof. Parts (1), (3) and (7) follow from the corresponding statements for rings, cf. Lemma
2.2.3 and Exercise 2.2.5. Part (2) follows from the corresponding fact for monoids with zeros, cf.
Lemma 3.1.5.

We continue with (4). The semiring B+ is a ring since every element a ∈ B has an additive
inverse, namely (−1) ·a. Clearly, a ring a cancellative. Multiplication of 1+(−1) = 0 by any
element a of B yields a+(−a) = 0, which shows that−a is an additive inverse of a. In particular,
we get (−1)+(−1)2 = 0 for a =−1. Thus (−1)2 = (−1)2 +(−1)+1 = 1.

We continue with (5). If B is with −1, then B+ is a ring by (4). Thus there exists a unique
morphism f : Z→ B+. Since −1 ∈ B•, we have f ({0,±1} ⊂ B•, which shows that f is a
blueprint morphism F12 → B. Conversely, assume that there exists a morphism f : F12 → B.
Then the semiring morphism f+ : Z→ B+ maps −1 to the additive inverse −1 of 1 in B+, and
−1 = f •(−1) ∈ B•. This shows the first statement of (5). The second claim follows since the
image of 1 determines the semiring morphism F+

12 = Z→ B+ uniquely.
We continue with (6). Assume that B is idempotent, i.e. 1+1 = 1 in B+. Then the unique

morphism F1→ B factors through B= F1�〈1+1≡ 1〉 by the universal property of the quotient,
cf. Proposition 4.4.2. Conversely, assume that there is a morphism f : B→ B. Then 1+ 1 =
f+(1)+ f+(1) = f+(1+1) = f+(1) = 1, which shows that B is idempotent. Since the images
of 0 and 1 are fixed, it is clear that B→ B is unique. This completes the proof of the lemma.

Example 4.5.3. The cyclotomic extension F1n of F1 is with −1 if and only if n is even; cf.
Example 4.4.4 for the definition of F1n . Its ambient semiring F+

1n is a ring for all n > 2. This
shows that it is not true in general that a blueprint B is with −1 if B+ is a ring. Another
counterexample is the blueprint B = (2Z∪{1},Z) from Exercise 4.4.8.

Blueprints with inverses as a reflective subcategory

Let Blprinv ⊂ Blpr be the full subcategory of blueprints with inverses.

Lemma 4.5.4. The category Blprinv of blueprints with inverses is a reflective subcategory of
Blpr with reflection (−)inv =−⊗F1 F12 .

Proof. Let B be a blueprint and C a blueprint with inverses. Note that Binv = B⊗F1 F12 is indeed
a blueprint with inverses since there exists a morphism F12 → B⊗F1 F12 , which sends a to 1⊗a,
cf. Lemma 4.5.2, part (5). Thus (−)inv is well-defined.

The morphism ι : B→ B⊗F1 F12 that sends a to a⊗1 induces a map Φ : Hom(Binv,C)→
Hom(B,C), which is functorial in B and C. By Lemma 4.5.2, part (5), there is a unique
morphism F12 →C. Since F1 is initial, there are unique morphisms F1→ F12 and F1→ B, and
the compositions F1→ B→C and F1→ F12 →C are equal. By the universal property of the
tensor product, g factors uniquely into ι◦ f for some morphism f : B⊗F1 F12 →C. This shows
that Φ is a bijection and that −⊗F1 F12 is a left adjoint to the embedding Blprinv→ Blpr.
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Cancellative blueprints as a reflective subcategory

Let Blprcanc ⊂ Blpr be the full subcategory of cancellative blueprints.

Lemma 4.5.5. The category Blprcanc of cancellative blueprints is a reflective subcategory of
Blpr whose reflection (−)canc : Blpr→ Blprcanc sends a blueprint B to Bcanc = B�ccanc where

ccanc =
〈

x≡ y
∣∣x+ z = y+ z for some z ∈ B+

〉
.

Proof. To begin with, we show that ccanc is equal to c= {x≡ y|x+ z = y+ z for some z ∈ B+},
i.e. that c is a congruence. It is clear that c is reflective and symmetric. For transitivity, consider
x ∼c y and y ∼c z, i.e. x+ r = y+ r and y+ s = z+ s for some r,s ∈ B+. Then x+ r + s =
y+ r+ s = z+ r+ s and x ∼c z. For additivity and multiplicativity, consider x ∼c y and z ∼c t,
i.e. x+ r = y+ r and z+ s = t + s for some r,s ∈ B+. Then x+ z+ r+ s = y+ t + r+ s implies
x+ z∼c y+ t. Using

ys+ rs = (y+ r)s = (x+ r)s = xs+ rs and rt + rs = r(t + s) = r(z+ s) = rz+ rs,

we get

xz+ xs+ rz+ rs = (x+ r)(z+ s) = (y+ r)(t + s) = yt + ys+ rt + rs = xz+ xs+ rz+ rs,

which implies xz∼c yt. Thus c is a congruence on B and ccanc = c. Moreover, we conclude that
π : B→ Bcanc is an isomorphism if B is cancellative.

We continue with showing that Bcanc is a cancellative blueprint. Let π : B→ Bcanc be the
quotient map. Consider an equality π(x)+π(r) = π(y)+π(r) in (Bcanc)+. Since ccanc = c, we
have x+ r+ s = y+ r+ s for some s ∈ B+. Thus x∼c y and π(x) = π(y). This shows that Bcanc

is cancellative and thus an object of Blprcanc.
Let f : B → C be a morphism into a cancellative blueprint C and consider x ∼c y, i.e.

x+ z = y+ z for some z ∈ B+. Then f+(x)+ f+(z) = f+(y)+ f+(z) and f+(x) = f+(y) since
C is cancellative. This shows that c is contained in the congruence kernel of f . By the universal
property of the quotient map π : B→ Bcanc, there is a unique morphism f canc : Bcanc→C such
that f = f canc ◦π, cf. Proposition 4.4.2. Given an arbitrary morphism f : B→C of blueprints,
we define f canc = gcanc where g is the composition B→ C→ Ccanc. This defines the functor
(−)canc : Blpr→ Blprcanc.

Let C be a cancellative blueprint. Then the map Hom(Bcanc,C)→ Hom(B,C) sending
f : Bcanc→C to f ◦π : B→C is a bijection by what we have shown in the last paragraph. This
shows that (−)canc is a left adjoint to the embedding Blprcanc→ Blpr.

Idempotent blueprints as a reflective subcategory

Let Blpridem ⊂ Blpr be the full subcategory of idempotent blueprints.

Lemma 4.5.6. The category Blpridem of idempotent blueprints is a reflective subcategory of Blpr
with reflection (−)idem =−⊗F1 B.

Proof. Let B be a blueprint and C an idempotent blueprint. Note that Bidem = B⊗F1 B is indeed
an idempotent blueprint since there exists a morphism B→ B⊗F1 B, which sends a to 1⊗a, cf.
Lemma 4.5.2, part (6). Thus (−)idem is well-defined.

The morphism ι : B→ B⊗F1 B that sends a to a⊗1 induces a map Φ : Hom(Bidem,C)→
Hom(B,C), which is functorial in B and C. By Lemma 4.5.2, part (6), there is a unique morphism
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B→C. Since F1 is initial, there are unique morphisms F1→B and F1→B, and the compositions
F1 → B→ C and F1 → B→ C are equal. By the universal property of the tensor product, g
factors uniquely into ι◦ f for some morphism f : B⊗F1 B→C. This shows that Φ is a bijection
and that −⊗F1 B is a left adjoint to the embedding Blpridem→ Blpr.

We illustrate the subcategories considered so far in Figure 4.1 where a containment of areas
in the illustration indicates a containment of the corresponding subcategories and an empty
intersection of areas indicates that the trivial blueprint is the only object in common.

Blpr
BlpridemBlprcanc

SRings

Blprinv

Mon

Rings

Figure 4.1: Some relevant subcategories of Blpr

Blue fields as a coreflective subcategory

Definition 4.5.7. Let B be a blueprint. The unit field of B is the subblueprint B? of B whose
underlying monoid is (B?)• = {0}∪B× and whose ambient semiring (B?)+ is the subsemiring
of B+ generated by (B?)•.

Note that B? is a blue field unless B is the trivial blueprint, which yields B? = B = {0}. Let
Blpr? ⊂ Blpr be the full subcategory whose objects are blue fields and the trivial blueprint.

Lemma 4.5.8. The subcategory Blpr? is a coreflective subcategory of Blpr whose reflection
sends a blueprint to its unit field.

Proof. It is obvious that the unit field B? of a blueprint is a blue field and thus in Blpr?. Since
every blueprint morphism f : B→C maps 0 to 0 and B× to C×, we can restrict f to a morphism
f ? : B?→C? between the respective unit fields. This defines a functor (−)? : Blpr→ Blpr?.

For the same reason, the map Hom(B,C?)→ Hom(B,C) that sends a morphism f : B→C
from a blue field B to a blueprint C to its composition with the inclusion C?→C is a bijection.
This shows that (−)? is right adjoint to the inclusion of Blpr? into Blpr as a subcategory.

Remark 4.5.9. Lemma 4.5.8 stays in stark contrast to the analogous situation for (semi)fields and
(semi)rings. The Lemma implies that Blpr? is complete and cocomplete and that the colimit of
blue fields, calculated in Blpr, is again a blue field. A particular instance is that the tensor product
of blue fields is again a blue field. Of course, this also follows directly from the construction of
the tensor product as the set of pure tensors.
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Partially additive blueprints as a coreflective subcategory

Exercise 4.5.10 (Partially additive blueprints). A partially additive blueprint is a blueprint B
such that the congruence kernel of the quotient map (B•)+→ B+ is generated by relations of the
form a∼∑b j with a,b j ∈ B•. Let Blprpadd be the full subcategory of partially additive blueprints
in Blpr.

Show that Blprpadd is a coreflective subcategory of Blpr whose reflection sends a blueprint B
to B•�cpadd where

cpadd =
〈

a≡ ∑b j |a,b j ∈ A and a = ∑b j in B+
〉
.

Show that Blprpadd contains Mon, SRings and Blprinv. Show that there exists nontrivial
blueprints in the intersections of Blprpadd with Blprcanc and with Blpridem, but that Blprpadd

neither contains nor is contained in either of Blprcanc and Blpridem.

Remark 4.5.11. The name “partially additive blueprint” is derived from the fact that a partially
additive blueprint B is characterized by its underlying monoid B• and the partial functions Σn :
Bn 99K B (for n> 1) that are defined as follows: the domain of Σn consists of all (a1, . . . ,an)∈ Bn

such that ∑ai ∈ B, and the value of such an element is Σn(a1, . . . ,an) = ∑ai.
This notion is closely connected to Deitmar’s theory of sesquiads in [Dei13]. Namely, a

sesquiad corresponds naturally to a partially additive and cancellative blueprint; cf. Remark 2.9
in [Lor15] for more details.

Compatibility with quotients

Some of the properties considered above are compatible with taking quotients. We will explain
some of such compatibilities in the following lemma.

Lemma 4.5.12. Let B be a blueprint and c be a congruence on B. Assume that B�c is nontrivial.
If B is a semiring, a blue field, with inverses or idempotent, then B�c is so, too.

Proof. We proof the claim case by case. Let B = (R•,R) be a semiring. Then R•/c• = (R/c)•

and B�c= ((R/c)•,R/c) is a semiring.
Let B be a blue field, i.e. B× = B−{0}. Since B�c is nontrivial, the quotient map π : B→

B�c maps units a ∈ B× to nonzero elements π(a) of B�c. Thus π restricts to a surjection
B×→ (B�c)−{0}. Thus every nonzero element of B�c is of the form π(a) for some a ∈ B, and
π(a−1) is a multiplicative inverse of π(a). This shows that B�c is a blue field.

Let B be with inverses, which is equivalent to the existence of a morphism F12 → B by
Lemma 4.5.2, part (5). Thus we gain a morphism F12 → B→ B�c, which shows that B�c is
with inverses.

Let B be idempotent, which is equivalent to the existence of a morphism B→ B by Lemma
4.5.2, part (6). Thus we gain a morphism B→B→B�c, which shows that B�c is idempotent.

4.6 Ideals

We have seen already that the notion of an ideal has different generalizations to semirings as
congruences, ideals and k-ideals, depending on our purpose. The situation for monoids is similar.
For blueprints, there are even more meaningful generalizations. We have already introduced
congruences for blueprints. In this section, we define ideals, k-ideals and m-ideals and discuss
their properties.
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Definition 4.6.1. Let B be a blueprint. An m-ideal or monoid ideal of B is an ideal I of the
monoid with zero B•. An ideal of B is an m-ideal I of B such that for all a1, . . . ,an ∈ I and b ∈ B,
an equality b = ∑ai in B+ implies b ∈ I. A k-ideal of B is an m-ideal I of B such that for all
a1, . . . ,an,b1 . . . ,bm ∈ I and c ∈ B, an equality ∑ai + c = ∑b j in B+ implies c ∈ I.

It is apparent from the definition that every k-ideal is an ideal and that every ideal is an
m-ideal. If B' Ablue for a monoid with zero A, then an m-ideal of B is the same as an ideal of A.
If B' Rblue for a semiring R, then a (k-)ideal of B is the same as a (k)-ideal of R.

Lemma 4.6.2. Let f : B→C be a blueprint morphism and I an (m/k-)ideal of C. Then f−1(I)
is an (m/k-)ideal of B.

Proof. Let I be an m-ideal of C and J = f−1(I). By definition, I is an ideal of C•. By Lemma
3.5.5, J is an ideal of B•, i.e. it is an m-ideal of B.

Let I be an ideal and consider b = ∑ai in B+ with b ∈ B and ai ∈ J. Then f (b) = ∑ f (ai)
with f (ai) ∈ I. Thus f (b) ∈ I since I is an ideal, and b ∈ J. This shows that J is an ideal.

Let I be a k-ideal and consider ∑ai + c = ∑b j in B+ with c ∈ B and ai,b j ∈ J. Then
∑ f (ai)+ f (c) = ∑ f (b j) with f (ai), f (b j) ∈ I. Thus f (c) ∈ I since I is a k-ideal, and c ∈ J.
This shows that J is a k-ideal.

Lemma 4.6.3. Let B be a blueprint and I a (k)-ideal of B+. Then I∩B• is a (k)-ideal of B. If I
is the (k)-ideal of B+ generated by a (k)-ideal J of B, then J = I∩B•.

Proof. We begin with a general observation. Let I be a (k)-ideal of B+. Then I is, in particular,
an ideal of the multiplicative monoid of B+ and J = I∩B• is the inverse image of I with respect
to the inclusion B•→ B+, which is a morphism of monoids with zero. Thus J is an m-ideal of B.

Let I be an ideal of B+ and J = I∩B•. Consider an equality b = ∑ai in B+ with ai ∈ J and
b ∈ B. Then ∑ai ∈ I and b ∈ I. Thus b ∈ J = I∩B•, which shows that J is an ideal of B. This
proves the first claim for ideals.

Let I be a k-ideal of B+ and J = I ∩B•. Consider an equality ∑ai + c = ∑b j in B+ with
ai,b j ∈ J and c ∈ B. Then a = ∑ai and b = ∑b j are elements in the k-ideal I and thus a+ c = b
implies that c ∈ I. Thus c ∈ J = I∩B•, which shows that J is a (k)-ideal of B. This proves the
first claim for k-ideals.

Let J be an ideal of B and I = 〈J〉 the ideal of B+ generated by J. It is clear that J ⊂ I∩B.
By Corollary 2.5.4, we know that I = {∑aisi|ai ∈ R,si ∈ J}. Since J is an ideal, we have in fact
I = {∑ai|ai ∈ J}. We conclude that if b = ∑ai is in I∩B•, then b ∈ J since J is an ideal. Thus
J = I∩B• as claimed.

Let J be a (k)-ideal of B and I = 〈J〉k the (k)-ideal of B+ generated by J. Clearly, J ⊂ I∩B.
By Corollary 2.5.4, we know that I = {c ∈ B+|a+ c = b for some a,b ∈ 〈J〉}. Let c ∈ I ∩B•.
Then there are ai,b j ∈ J such that ∑ai+c = ∑b j by the characterization of I. Since J is a k-ideal
of B, we conclude that c ∈ J and thus J = I ∩B• as claimed. This concludes the proof of the
lemma.

As a consequence, we derive in the following statement an explicit description for the
smallest (m/k-)ideal of a blueprint B containing a given subset S. We call this (m/k-)ideal, the
(m/k-)ideal generated by S.

Corollary 4.6.4. Let B be a blueprint and S a subset of B. Then the m-ideal generated by S is

〈S〉m =
{

as
∣∣a ∈ B,s ∈ S∪{0}

}
,
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the ideal generated by S is
〈S〉 =

{
∑ai

∣∣ai ∈ 〈S〉m
}

and the k-ideal generated by S is

〈S〉k =
{

c ∈ B
∣∣a+ c = b in B+ for some a,b ∈ 〈S〉

}
.

Proof. The claim for m-ideals follows from the corresponding fact for monoids with zero, cf.
section 3.4. The claim for ideals and k-ideals follows from combining Lemma 4.6.3 with
Corollary 2.5.4.

Another consequence is the following.

Corollary 4.6.5. Let B be a blueprint whose ambient semiring B+ is a ring. Then every ideal of
B is a k-ideal.

Proof. Let I be an ideal of B and I+ the ideal of B+ generated by I. Then I+ is a k-ideal of B+

since B+ is a ring and thus I = I+∩B is a k-ideal of B by Lemma 4.6.3.

Exercise 4.6.6. Let B be a cancellative blueprint and I an ideal of B. Consider the ring B+
Z =

B+⊗+NZ= (B⊗F1 F12)+ as a blueprint and let ι : B→ B+
Z the morphism that sends a to a⊗1.

Let J = 〈ι(I)〉 be the ideal of B+
Z that is generated by ι(I). Show that I is a k-ideal of B if and

only if I = ι−1(J). Hint: Use Exercise 2.5.8 and Lemma 4.6.3.

Exercise 4.6.7. Let B be a cancellative blueprint, I a k-ideal of B and c= c(I) the congruence
generated by I. Show that B�c is cancellative.

Definition 4.6.8. Let f : B→ C be a morphism of blueprints. The kernel of f is the subset
ker f = f−1(0) of B.

Proposition 4.6.9. The kernel of a blueprint morphism is a k-ideal and every k-ideal appears as
the kernel of a blueprint morphism. More precisely, let B be a blueprint, I a k-ideal of B and
c = c(I) the congruence on B+ generated by I. Then I is the kernel of the quotient morphism
π : B→ B�c.

Proof. Let f : B→ C be a blueprint morphism and f+ : B→ C the morphism between the
ambient semirings. By Proposition 2.5.3, ker f+ is a k-ideal of the semiring B+ and by Lemma
4.6.3, ker f = ker f+∩B is a k-ideal of B.

Let B be a blueprint, I a k-ideal of B and I+ = {∑ai|ai ∈ I} the ideal of B+ generated by I.
Then c= c(I) is contained in c(I+). By Proposition 2.5.3, a∼c(I+) b implies a+ c = b+d for
some c,d ∈ I+, i.e. c = ∑ck and d = ∑dl for some ck,dl ∈ I. Since ck ∼c 0∼c dl , we have

a ∼c a+∑ck = b+∑dl ∼c b,

which shows that c= c(I+).
Let π : B→ B�c be the quotient morphism. Using Proposition 2.5.3 once again, we see that

kerπ+ is the k-ideal of B+ generated by I+. Since I+ is generated by I as an ideal, kerπ+ is
generated by I as a k-ideal. Thus by Lemma 4.6.3, I = kerπ+∩B = kerπ, as claimed.
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We summarize the relations between the different notions of ideals and congruences for
semirings, monoids with zero and blueprints in the following picture:

global

{
ideals of B•

} {
congruences on B•

}

{
m-ideals of B

} {
ideals of B

} {
k-ideals of B

} {
congruences on B

}

{
ideals of B+

} {
k-ideals of B+

} {
congruences on B+

}

1:1

1:1

Exercise 4.6.10. Conclude from the previous results that for every pair of an injection i and a
surjection p between two sets in the above diagram, p◦ i is the identity. Show that “paths in the
same diagonal direction” commute, i.e. every subdiagram that does neither contain both an up
arrow and a down arrow nor contain both a left arrow and a right arrow is commutative.

4.7 Prime ideals

Definition 4.7.1. Let B be a blueprint. An (m/k-)ideal I of B is proper if I 6= B. It is prime if
S = B− I is a multiplicative subset. An (m/k-)ideal I is maximal if it is proper and I ⊂ J implies
I = J for every other proper (m/k-)ideal J of B.

Note that as in the case of semirings, an m-ideal I of B is proper or prime as an m-ideal if and
only if it is proper or prime, respectively, as an ideal or a as k-ideal. Moreover, every k-ideal that
is a maximal ideal is a maximal k-ideal and every ideal that is a maximal m-ideal is a maximal
ideal. However, a maximal k-ideal does not need to be a maximal ideal, and a maximal ideal
does not need to be a maximal m-ideal; cf. Example 4.7.8.

Note that similar to the case of monoids with zero, every blueprint B has a unique maximal
m-ideal, which is m= B−B×. In this sense, every blueprint is local (with respect to m-ideals).

Lemma 4.7.2. Let B be a blueprint. Then every maximal (m/k-)ideal of B is prime.

Proof. The claim is immediate for m-ideals since m= B−B× is the unique maximal m-ideal
and the product of any element of B by a non-unit is a non-unit.

The proof for ideals and k-ideals is analogous to the case of semirings. We repeat the
argument in brevity. Let m be a maximal (k-)ideal and ab ∈m with a /∈m, i.e. B is generated by
S =m∪{a} as a (k-)ideal. We want to show that b ∈m.

In the case that m is a maximal ideal, Corollary 4.6.4 implies that 1 = ∑ekck for some ck ∈ S
and ek ∈ B. Since bck ∈m, we obtain b = ∑bekck ∈m, which shows that m is prime.

In the case that m is a maximal k-ideal, Corollary 4.6.4 implies that ∑ekck +1 = ∑ fldl for
some ck,dl ∈ S and ek, fk ∈ B and thus ∑bekck +b = ∑b fldl . Since bekck,b fldl ∈m and m is a
k-ideal, we conclude that b ∈m and that m is prime.

Exercise 4.7.3. Let B be a blueprint and I a proper (m/k-)ideal of B. Then I is contained in a
maximal (m/k-)ideal of B. In particular, every nontrivial blueprint has a maximal (m/k-)ideal.
Hint: The claims are obvious for m-ideals. For ideals and k-ideals, it follows from a standard
application of the lemma of Zorn.
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Lemma 4.7.4. Let f : B→C be a morphism of blueprints and I a prime (m/k-)ideal of C. Then
f−1(I) is a prime (m/k-)ideal of B.

Proof. This follows from combining Lemmas 3.5.5 and 4.6.2.

Exercise 4.7.5. Let B be a blueprint, I a k-ideal and c = c(I) the congruence generated by I.
Show that I is prime if and only if B�c is without zero divisors. Find examples of a blueprint
B and an ideal J of B for: (1) J is prime and B�c(J) has zero divisors; (2) J is not prime and
B�c(J) is without zero divisors.

Lemma 4.7.6. Let B be a blueprint and S⊂ B a subset that generates B• over B×, i.e. for every
b ∈ B, there are an element a ∈ B× and elements s1, . . . ,sn ∈ S∪{0} such that b = as1 · · ·sn.
Then every prime m-ideal p of B is generated by a subset J of S, i.e. p= 〈J〉m.

Proof. Let J = S∩ p. Then clearly 〈J〉m ⊂ p. Consider b ∈ B−〈J〉m, i.e. b = as1, . . . ,sn for
some a ∈ B× and s1, . . . ,sn ∈ S− J. By the definition of J and since B× ∩ p = /0, we have
a,s1, . . . ,sn ∈ B−p. Since B−p is a multiplicative set, b = as1, . . . ,sn ∈ B−p, which shows that
p= 〈J〉m as claimed.

Example 4.7.7. Let k be a blue field and B = k[T1, . . . ,Tn]. Then B• is generated by S =
{T1, . . . ,Tn} over B× and thus every prime m-ideal of B is generated by a subset of S. In this
example, it is easily verified that for every subset J of S, the m-ideal pJ = 〈J〉m is prime and even
a k-ideal.

More generally, if k is a blue field and B = k[T1, . . . ,Tn]�c, then we have inclusions
{

prime k-ideals of B
}
⊂
{

prime ideals of B
}
⊂
{

prime m-ideals of B
}
⊂
{

subsets of S
}

where S = {T1, . . . ,Tn}.

Example 4.7.8. The following example witnesses the digression between maximal m-ideals,
maximal ideals and maximal k-ideals. Let B = F1[T1,T2]�〈T1+T1 ≡ 1,T2+1≡ T2〉. By Lemma
4.7.2, every maximal (m/k-)ideal of B is prime. By Lemma 4.7.6, every prime m-ideal of B is
generated by a subset of the generators T1 and T2 of B over the blue field F1. Thus it suffices to
consider the (m/k-)ideals of B generated by the empty set, {T1}, {T2} and {T1,T2}.

Since the unit group B× = {1} does contain neither T1 nor T2, the unique maximal m-ideal
of B is B−B× = 〈T1,T2〉m. If I is an ideal of B that contains T1, then 1 = T1 +T1 is also in I,
i.e. I = B is not proper. However, 〈T2〉= T2 ·B is a proper ideal since there is no relation of the
form ∑ai = 1 in B+ with ai ∈ 〈T2〉. Thus 〈T2〉= 〈T2〉m is the unique maximal ideal of B. If I is a
k-ideal of B that contains T2, then it also contains 1 since T2 +1 = T2. Thus 〈T2〉k is not proper.
We conclude that the only prime k-ideal is 〈 /0〉k = {0}, which is henceforth the unique maximal
k-ideal.

We see in this example that we have proper inclusions of {0}( 〈T2〉( 〈T1,T2〉m, and that
the three different notions of maximality do not coincide.

4.8 Localizations

Definition 4.8.1. Let B be a blueprint and S a multiplicative subset of B. The localization of
B at S is the blueprint S−1B = (S−1B•,S−1B+). We write B[h−1] = S−1B if S = {hi}i∈N for an
element h ∈ B. We write Bp = S−1B if S = B− p for a prime m-ideal p. If S = B−{0} is a
multiplicative subset of B, then we define the fraction field of B as FracB = S−1B.
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Note that S−1B is indeed a blueprint. First of all, S is clearly a multiplicative subset of B+

with respect to the inclusion B ↪→ B+. Secondly, the induced map S−1B•→ S−1B+ is injective
since for elements a,a′ ∈ B and s,s′ ∈ S, the fractions are equal in S−1B if and only if there is
a t ∈ S such that tsa′ = ts′a, which, in turn, is equivalent to a

s = a′
s′ in S−1B+. This identifies

S−1B• with a submonoid of S−1B+, which clearly contains the zero 0
1 and the one 1

1 and which
generates S−1B+ as a semiring.

Note further that (S−1B)• = S−1(B•) and (S−1B)+ = S−1(B+) by the definition of the local-
ization S−1B. Therefore we can write S−1B• and S−1B+ without ambiguity. Finally note that the
localization of B at S comes with the blueprint morphism ιS : B→ S−1B that sends a to a

1 . This
morphism satisfies ιS(S)⊂ (S−1B)×.

Example 4.8.2. We define B[T±1] as B[T ][T−1] = S−1B[T ] where S = {T i}i∈N. If B is a blue
field, then we have B[T ]p = B[T ] for p= 〈T 〉 and B[T ]p = FracB[T ] = B[T±1].

Exercise 4.8.3. (Universal property of localizations) Let B be a blueprint, S a multiplicative
subset and ιS : B→ S−1B the localization map. Show that for every blueprint morphism f : B→C
such that f (S)⊂C×, there is a unique morphism fS : S−1B→C such that f = fS ◦ ιS.

Exercise 4.8.4. (Fraction fields) Let B be a blueprint and S = B−{0}. Show that S is a
multiplicative set if and only if B is nontrivial and without zero divisors. In case that S is a
multiplicative set, show that the localization map B→ FracB is injective if and only if B is
integral.

Localization is a very harmless operation on blueprints in the sense that it behaves well with
basically all properties of blueprints that we have encountered in this chapter. Note that S−1B is
trivial if 0 ∈ S, which is why we exclude this case in the following statement.

Lemma 4.8.5. Let B be a blueprint and S a multplicative subset of B that does not contain 0. If
B is a monoid, a semiring, a blue field, integral, without zero divisors, with inverses, idempotent
or cancellative, then S−1B is so, too.

Proof. We prove the claim case by case. Let B= (A,A+) be a monoid. Then S−1(A+) = (S−1A)+

and thus S−1B = (S−1A,(S−1A)+) is a monoid.
Let B = (R•,R) be a semiring. Then S−1(R•) = (S−1R)• and thus S−1R = ((S−1R)•,S−1R)

is a semiring.
Let B be a blue field. Then S−1B = B is a blue field.
Let B be integral. By Exercise 4.8.4, B⊂ S−1B⊂ FracB, which shows that S−1B is integral.
Let B without zero divisors and consider a product a

s · b
t =

0
1 . Then there is a w ∈ S such that

wab = wst ·0 = 0 in B. Since w 6= 0, we have a = or b = 0. Thus a
s =

0
1 or b

t =
0
1 , which shows

that S−1B is without zero divisors.
Let B be with inverses, which is equivalent to the existence of a morphism F12 → B by

Lemma 4.5.2, part (5). Thus we gain a morphism F12 → B→ S−1B, which shows that S−1B is
with inverses.

Let B be idempotent, which is equivalent to the existence of a morphism B→ B by Lemma
4.5.2, part (6). Thus we gain a morphism B→ B→ S−1B, which shows that S−1B is idempotent.

Let B be cancellative and consider an equality x
s +

z
v =

y
t +

z
v in S−1B. Then there is a w ∈ S

such that wtvx+wstz = wsvy+wstz in B. Since B is cancellative, we have wtvx = wsvy in B.
Thus x

s =
y
t in S−1B, which shows that S−1B is cancellative.
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Exercise 4.8.6. Let B be a partially additive blueprint, cf. Exercise 4.5.10, and S a multplicative
subset of B. Show that S−1B is partially additive.

Lemma 4.8.7. Let B be a blueprint, S a multiplicative subset and ιS : B→ S−1B the localization
map. Let I be an (m/k-)ideal of B. Then

S−1I =
{ a

s ∈ S−1B
∣∣a ∈ I,s ∈ S

}

is the (m/k-)ideal of S−1B that is generated by ιS(I).

Proof. Clearly we have ιS(I)⊂ S−1I ⊂ 〈I〉m. Thus it suffices to show that S−1I is an (m/k-)ideal
if I is so.

Let I be an m-ideal of B, which is the same as an ideal of the monoid B•. By Lemma 3.6.2,
S−1I is an ideal of the monoid S−1B•, which means that it is an m-ideal of S−1B.

Let I be an ideal of B. We know already that S−1I is an m-ideal of S−1B. Consider an equality
a
s = ∑

ai
si

in S−1B+ with a ∈ B, ai ∈ I and s,si ∈ S. This means that there is a t ∈ S such that

t
(
∏
all i

si
)
a = ∑

i
ts
(
∏
j 6=i

s j
)
ai

holds in B+. Since all terms ts(∏ j 6=i s j)ai are in I, also t(∏si)a is in I. Thus a
s = t(∏si)a

t(∏si)s
is in

S−1I. This shows that S−1I is an ideal of S−1B.
Let I be a k-ideal of B. We know already that S−1I is an m-ideal of S−1B. Consider an

equality ∑
ai
si
+ a

s = ∑
a′j
s′j

in S−1B+ with a ∈ B, ai,a′j ∈ I and s,si,s′j ∈ S. This means that there is
a t ∈ S such that

∑
i

ts
(
∏
k 6=i

sk
)(

∏
all j

s′j
)
ai + t

(
∏
all i

si
)(

∏
all j

s′j
)
a = ∑

j
ts
(
∏
all i

si
)(

∏
k 6= j

s′k
)
a′j

holds in B+. Since all terms ts(∏k 6=i sk)(∏s′j)ai and ts(∏si)(∏k 6= j s′k)a
′
j are in I, we also have

t(∏si)(∏s′j)a is in I. Thus a
s =

t(∏si)(∏s′j)a
t(∏si)(∏s′j)s

is in S−1I. This shows that S−1I is a k-ideal of S−1B,
which concludes the proof of the lemma.

Proposition 4.8.8. Let B be a blueprint, S a multiplicative subset of B and ιS : B→ S−1B the
localization maps. Then the maps

{
prime m-ideals p of B with p∩S = /0

}
←→

{
prime m-ideals of S−1B

}

p
Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections. A prime m-ideal p of B with p∩S = /0 is a (k-)ideal if and only if
S−1p is a (k-)ideal.

Proof. The claim for m-ideals follows from Proposition 3.6.4. The claim for (k-)ideals follows
from Lemmas 4.6.2 and 4.8.7.
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Residue fields

Let B be a blueprint, p a prime m-ideal of B and S = B−p. Then S−1p is the complement of the
units of S−1B and therefore its unique maximal m-ideal.

Definition 4.8.9. Let B be a blueprint and p a prime m-ideal of B. The residue field at p is the
blueprint k(p) = Bp�c(S−1p) where S is the complement of p in B and c(S−1p) is the congruence
on B+

p that is generated by S−1p.

Let p be a prime m-ideal of a blueprint B. Then the residue field at p comes with a canonical
morphism B→ k(p), which is the composition of the localization map B→ Bp with the quotient
map Bp→ k(p). Note that the residue field k(p) can be the trivial semiring in case that p is not a
k-ideal. More precisely, we have the following.

Corollary 4.8.10. Let B be a blueprint, p a prime m-ideal of B and S = B−p. Then the residue
field k(p) is a blue field if p is a k-ideal and trivial if not.

Proof. First assume that p is a prime k-ideal. Then p is the maximal prime k-ideal that does not
intersect S and thus m= S−1p is the unique maximal k-ideal of S−1B by Proposition 4.8.8, m
is a k-ideal. Thus the kernel of S−1B→ k(p) is m, which shows that k(p) is not trivial. Since
(S−1B)× = S−1B−m, we see that (S−1B)× → k(p)−{0} is surjective, which shows that all
nonzero elements of k(p) are invertible, i.e. k(p) is a blue field.

Next assume that p is not a k-ideal. By Proposition 4.8.8, m= S−1p is not a k-ideal, which
means that the kernel of S−1B→ k(p) is strictly larger than m and therefore contains a unit of
S−1B. This shows that k(x) must be trivial.

Corollary 4.8.11. Let B be a nontrivial blueprint. Then there exists a morphism B→ k into a
blue field k.

Proof. By Exercise 4.7.3, B has a maximal k-ideal m. By Lemma 4.7.2, m is prime. By Corollary
4.8.10, the residue field k(m) is a blue field, which provides a morphism B→ k(m) from B into
a blue field k(m).

Corollary 4.8.12. Let B be a blueprint and p be a prime (k-)ideal of B. Then there is a prime
(k-)ideal q of B+ such that p= q∩B.

Proof. Consider the commutative diagram

B Bp

B+ (Bp)
+

ιp

α αp

ι+p

of blueprint morphisms. Let S = B− p. By Proposition 4.8.8, S−1p is the unique maximal
(k-)ideal of Bp. Let I be the (k-)ideal of (Bp)

+ generated by αp(S−1p). By Lemma 4.6.3, we
have S−1p= I∩Bp, which shows that I is a proper ideal of Bp)

+. Exercise 4.7.3 shows that I is
contained in a maximal (k-)ideal m of (Bp)

+, which is prime by Lemma 4.7.2. Thus α−1
p (m) is a

prime (k-)ideal by Lemma 4.6.2 and thus S−1p⊂ α−1
p (m)( Bp. By the maximality of S−1p, we

conclude that S−1p= α−1
p (m).

Using Lemma 4.6.2 once again, we see that q= (ι+p )
−1(m) is a prime (k-)ideal of B+. By the

definition of q and the commutativity of the diagram, we have that p= ι−1
p

(
α−1
p (m)

)
= α−1(q),

which concludes the proof of the corollary.
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Exercise 4.8.13. Let B be a cancellative blueprint and p a prime k-ideal of B. Show that there is
a prime ideal q of B+

Z such that p= q∩B. Hint: A slight alteration of the argument in the proof
of Corollary 4.8.12, involving Lemmas 4.5.2 and 4.8.5 and Exercise 4.6.6, leads to success.
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Chapter 5

Ordered blueprints

chapter last edited on
May 16, 2018

In this chapter, we investigate ordered blueprints, which are an enhancement of blueprints by a
partial order for the ambient semiring. Ordered blueprints were originally introduced in [Lor15].

5.1 Ordered semirings

To begin with, we recall the concept of a preorder and a partial order. Let S be a set. A preorder
on S is a reflexive and transitive relation 6 on S. A partial order on S is an antisymmetric
preorder on S.

Definition 5.1.1. An ordered semiring is a semiring R together with a partial order 6 on R that
is additive and multiplicative, i.e. x 6 y implies x+ z 6 y+ z and xz 6 yz for all x,y,z ∈ R. A
morphism of ordered semirings (R1,6) and (R2,6) is a morphism f : R1→ R2 of semirings
that is order preserving, i.e. if x 6 y in R1, then f (x) 6 f (y) in R2. This defines the category
OSRings of ordered semirings.

A totally ordered semiring is an ordered semiring (R,6) whose partial order is total, i.e.
either a6 b or b6 a for all a,b ∈ R. An ordered semiring (R,6) is algebraic if the partial order
6 is trivial, i.e. x6 y only if x = y. The underlying semiring or the (algebraic) core of (R,6) is
R. The (algebraic) hull of (R,6) is the quotient semiring R/c where c is the congruence on R
that is generated by {(a,b)|a6 b}.

Remark 5.1.2. The terminologies “algebraic core” and “algebraic hull” stem from the corre-
sponding usage for ordered blueprints where the addition of the semiring and the partial order
can be bundled into one relation on the monoid semiring N[B•]. We refer the reader to 5.6 for
more details.

Example 5.1.3. We give a list of examples of ordered semirings. To begin with the trivial case:
every semiring R together with the trivial order is an (algebraic) ordered semiring.

Specific examples are: the natural numbers N together with the natural total order; the
nonnegative real numbers R>0 together with the natural total order; the tropical numbers T
together with the same total order as for R>0; the Boolean numbers B together with the partial
order generated by 06 1, i.e. a6 b if and only if a = 0 or b = 1.

The last two examples are special cases of the following construction. Let G be an abelian
group together with a total order 6 such that x6 y implies xz6 yz for all x,y,z ∈ G where we
write G multiplicatively. Let G0 = G∪{0}, which is a monoid with zero 0 with respect to the
extension of the multiplication of G to G0 by 0 · x = 0 for all x ∈ G0. We extend the partial order
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6 of G to G0 by 06 x for all x ∈ G0. Since 6 is a total order on G0, the maximum max{x,y} of
any two elements x,y ∈ G0 exists, and we define x+ y = max{x,y}. This addition turns G0 into
an idempotent semiring and (G0,6) into an ordered semiring.

Another specific example is the polynomial semiring B[T1, . . . ,Tn] with the following partial
order. The support of a polynomial f = ∑aeT e1

1 · · ·T en
n is the set supp f of multi-indices e =

(e1, . . . ,en) ∈ Nn for which ae 6= 0. We define f 6 g on B[T1, . . . ,Tn] if and only if supp f ⊂
suppg. This partial order turns B[T1, . . . ,Tn] into an ordered semiring.

Every semiring R comes with a natural additive and multiplicative preorder 6, which we
will define and study in Lemma 5.1.4 below. In many cases of interest, it turns out that 6 is a
partial order, i.e. (R,6) is an ordered semiring. Note that all ordered semirings of Example 5.1.3
are of this type. Note further that the preorder 6 also plays a central role in the definition of
totally positive blueprints, cf. section 5.6.

Lemma 5.1.4. Let R be a semiring and define x6 y if and only if x+ t = y for some t ∈ R. Then
the following holds true.

(1) The relation 6 is the smallest additive and multiplicative preorder on R that contains
06 1.

(2) The preorder 6 is a partial order if and only if x = x+ s+ t implies x = x+ s for all
x,s, t ∈ R.

(3) If R is idempotent, then 6 is a partial order. If 6 is a partial order, then R is strict.

Proof. To begin with, we show that 6 is an additive and multiplicative preorder that contains
06 1. Since x+0 = x, we have x6 x, i.e. 6 is reflective. If x6 y and y6 z, i.e. x+ s = y and
y+ t = z for some s, t ∈ R. Then x+ s+ t = y+ t = z and x 6 z, i.e. 6 is transitive. Let x 6 y,
i.e. x+ t = y for some t ∈ R, and z ∈ R. Then xz+ tz = yz implies xz6 yz and x+ z+ t = y+ z
implies x+ z 6 y+ z. Thus 6 is additive and multiplicative. Since 0+ 1 = 1, the preorder 6
contains 06 1.

Conversely, let 6′ be an additive and multiplicative preorder containing 06′ 1. Consider an
equation x+ t = y in R. Then we have

x = x+0 · t 6′ x+1 · t = y.

This shows that6′ contains6 and thus that6 is the smallest additive and multiplicative preorder
containing 06 1. This concludes the proof of (1).

The preorder 6 is a partial order if and only if it is antisymmetric, i.e. x6 y and y6 x imply
x = y. The inequalities x6 y and y6 x are, by the definition of 6, equivalent to the existence of
equalities x+ s = y and x = y+ t for some s, t ∈ R. Eliminating y by substituting y by x+ s yields
the single equation x = x+ s+ t, and the required implication x = y becomes x = x+ s. Thus (2).

Let R be idempotent. Then x+ s+ t = x implies

x+ s = x+ s+ t + s = x+ s+ t = x.

By part (2), 6 is a partial order, which proves the first claim of (3). Assume that 6 is a partial
order on R and s+ t = 0 for some elements s, t ∈ R. Then 0+ s+ t = 0 implies s = 0+ s = 0 by
(2), which shows that R is strict. This shows (3) and concludes the proof of the lemma.

Exercise 5.1.5. Let R be an idempotent semiring and 6 the partial order from Lemma 5.1.4.
Show that x 6 y if and only if x+ y = y. Conclude that 6 is a total order if and only if R is
bipotent, i.e. x+ y ∈ {x,y} for all x,y ∈ R.
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Exercise 5.1.6. Let R be a semiring and 6 the preorder on R defined in Lemma 5.1.4. Show that
the relation c= {(x,y)|x6 y and y6 x} is a congruence on R. Let π : R→ R/c be the quotient
map. Show that if x ∼c x′ and y∼c y′, then x 6 y if and only if x′ 6 y′. Conclude that the rule
π(x) 6 π(y) whenever x 6 y in R turns R/c into an ordered semiring with 0 6 1. Also confer
Exercise 5.6.13.

Show that the quotient map R→ R/c is a morphism (R,=)→ (R/c,6) of ordered semirings
and that it is universal for all morphisms from (R,=) into ordered semirings (S,6) with 06 1.

Exercise 5.1.7. Let R be a semiring and c the congruence defined in Exercise 5.1.6. Show that
R/c is trivial if and only if R is a ring. Show that, in fact, every ordered ring is algebraic.

As already observed in Example 5.1.3, every semiring R can be considered as an ordered
semiring (R,=) with respect to the trivial partial order. Evidently, a semiring morphism preserves
the trivial partial orders. Thus we can and will think of the category SRings as a subcategory
of OSRings. The embedding ι : SRings→ OSRings is full since every morphism of ordered
semirings is, by definition, a morphism of semirings.

Proposition 5.1.8. The category SRings of semirings is a reflective and coreflective subcategory
of the category OSRings of ordered semirings. The reflection (−)hull : OSRings→ SRings to
the inclusion functor ι : SRings→ OSRings sends an ordered semiring to its algebraic hull and
the coreflection (−)core : OSRings→ SRings to ι sends an ordered semiring to its algebraic
core.

Proof. To begin with, we define the functors (−)core and (−)hull. As described in the proposition,
we put (R,6)core = R and (R,6)hull = R/c where c is the congruence generated by {(x,y)|x6 y}.
Given an order preserving morphism f : R→ S between ordered semirings (R,6) and (S,6), we
define f core = f , which defines (−)core for morphisms. The composition of f with the quotient
map πS : S→ Shull yields a semiring morphism f ′ : R→ Shull. If x6 y in R, then f (x)6 f (y) in
S and thus f ′(x) = π( f (x)) = π( f (y)) = f ′(y) in Shull. By the universal property of the quotient
map πR : R→ Rhull, cf. Lemma 2.4.8, there is a unique morphism f hull : Rhull→ Shull such that
f ′ = f hull ◦πR. This defines (−)hull for morphisms.

We proceed with showing that (−)core is right adjoint to the inclusion ι : SRings→OSRings.
Let R be a semiring and (S,6) an ordered semiring. Then every semiring morphism f : R→ S
is automatically order preserving since x = y implies f (x) = f (y) and thus f (x) 6 f (y). This
establishes a natural bijection Hom

(
R,(S,6)core

)
→ Hom

(
(R,=),(S,6)

)
, and shows that

(−)core is right adjoint to ι.
We proceed with showing that (−)hull is left adjoint to the inclusion ι : SRings→ OSRings.

Let (R,6) be an ordered semiring, S a semiring and f : (R,6)→ (S,=) a morphism of ordered
semirings. Using the identification (S,=)hull = S, we obtain a morphism f hull : (R,6)hull→ S,
which is the unique morphism with f = f hull ◦ πR where πR : R→ (R,6)hull is the quotient
map. This defines an injection Hom

(
(R,6),(S,=)

)
→ Hom

(
(R,6)hull,S

)
whose surjectivity

can be seen as follows. Given a morphism g : (R,6)hull→ S, we obtain a semiring morphism
f = g◦πR : R→ S. If x6 y in R, then πR(x) = πR(y) and thus f (x) = g◦πR(x) = g◦πR(y) = f (y).
Therefore f (x)6 f (y) in (S,=), which shows that f is order preserving. Thus g = f hull, which
completes the proof of the adjunction between ι and (−)hull.

Corollary 5.1.9. The embedding ι : SRings→OSRings commutes with both limits and colimits,
i.e. we have lim ι(D)' ι(limD) and colim ι(D)' ι(colimD) for every diagram D in SRings.
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Exercise 5.1.10. Show that OSRings is complete and cocomplete. In particular, show that
(N,=) is its initial object and ({0},=) is its terminal object. Show that (limD)core ' limDcore

for every diagram D in OSRings, and that the partial order on limD is the richest partial order
on limDcore such that all the canonical projections π : limDcore→ R to ordered semirings (R,6)
in D are order preserving.

Note that colimits do not commute with the the algebraic core, but require a quotient
construction in general. For example, Z⊗NN= Z, but (Z,=)⊗(N,=) (N,6) = ({0},=) if the
partial order 6 on N is nontrivial.

5.2 The definition of ordered blueprints

Definition 5.2.1. An ordered blueprint is a triple B=(B•,B+,6) such that (B•,B+) is a blueprint
and (B+,6) is an ordered semiring. A morphism f : B→C of ordered blueprints is an order
preserving semiring morphism f+ : B+→C+ that maps B• to C•. Let OBlpr be the category of
ordered blueprints.

We call B• the underlying monoid, B+ the ambient semiring and 6 the partial order of B.

Let B = (B•,B+,6) be an ordered blueprint. We think of B• as the set of elements of B, i.e.
we write a ∈ B for a ∈ B• and S⊂ B for S⊂ B•. If we write x6B y or that x6 y holds in B, then
we assume implicitly that x and y are elements B+. Often we represent elements x of B+ as sums
x = ∑ai of elements ai of B•. So we might write that ∑ai 6 ∑b j holds in B where we assume
implicitly that ai,b j ∈ B•. We write ∑ai > ∑b j for ∑b j 6 ∑ai and ∑ai ≡ ∑b j for ∑ai 6 ∑b j

and ∑ai > ∑b j.
Note that a morphism f : B→ C of ordered blueprints is determined by the restriction

f • : B• → C•, and that this restriction is a morphism of monoids with zero. A morphism
f : B→C of ordered blueprints is injective if f • : B•→C• is injective, and it is surjective if f •

is surjective. Note that if f : B→C is surjective, then f+ : B+→C+ is also surjective, but that
the injectivity of f does not imply that f+ is injective.

Several definitions for blueprints have a meaningful extension to ordered blueprints.

Definition 5.2.2. Let B be an ordered blueprint. The unit group of B is the unit group B× of
its underlying monoid B•. The unit field of B is the ordered blueprint B? = B×∪{0}�r where
r = {∑ai 6 ∑b j|∑ai 6 ∑b j in B}. An ordered blue field is an ordered blueprint B such that
B× = B•−{0}.

The ordered blueprint B is integral, without zero divisors, cancellative, idempotent or with
−1 if the blueprint (B•,B+) is so.

Note that B? is an ordered blue field unless B is trivial. We denote by OBlpr? the full
subcategory of OBlpr whose objects are ordered blue fields and the trivial ordered blueprint. We
denote by OBlprcanc the full subcategory of cancellative ordered blueprints and by OBlpridem

the full subcategory of idempotent ordered blueprints.

Exercise 5.2.3. Formulate and prove a generalization of Lemma 4.5.2 to ordered blueprints.

Exercise 5.2.4. Show that OBlpr? is a coreflective subcategory of OBlpr and that OBlprcanc and
OBlpridem are reflective subcategories of OBlpr.
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First examples

Every ordered semiring (R,6) can be considered as an ordered blueprint (R•,R,6). We say that
an ordered blueprint B is an ordered semiring if it is isomorphic to an ordered blueprint of the
form (R•,R6), i.e. if B• = B+. The relation of OBlpr with Blpr and OSRings will be inspected
in more detail in section 5.6.

Every blueprint (B•,B+) can be considered as an ordered blueprint (B•,B+,=) by endowing
the ambient semiring B+ with the trivial partial order. We say that an ordered blueprint is
algebraic if it is isomorphic to an ordered blueprint of the form (B•,B+,=), i.e. if the ambient
semiring is trivially ordered. We briefly write algebraic blueprint for an algebraic ordered
blueprint.

The ordered blueprint F1 =({0,1},N,=) is the initial object in OBlpr, and the trivial ordered
blueprint ({0},{0},=) is a terminal object in OBlpr.

Other examples are ({0,1},N,6) and ([0,1],R>0,6) where6 denotes the natural total order
on N and R>0, respectively. We refer the reader to section 5.6 for more examples.

Exercise 5.2.5. Classify all ordered blueprints B whose ambient semiring B+ consists of two
elements 0 and 1.

5.3 Quotients

Let B = (B•,B+,6) be an ordered blueprint and r be a preorder on B+. We write x 6r y
if (x,y) ∈ r. We write x ≡r y if x 6 y and y 6r x. The preorder r is additive if x 6r y implies
x+z6r y+z for all x,y,z∈ B+ and it is multiplicative if x6r y implies xz6r yz for all x,y,z∈ B+.

Given a morphism f : B→C of ordered blueprints, we define the relation r( f ) = {(x,y) ∈
B+×B+| f (x)6C f (y)} on B+.

Lemma 5.3.1. Let f : B→C be a morphism of ordered blueprints. Then r( f ) is an additive and
multiplicative preorder on B+ that contains the partial order 6B of B.

Proof. The relation r( f ) is obviously reflective. If f (x) 6C f (y) 6C f (z), then f (x) 6C f (z),
i.e. r( f ) is transitive and thus a preorder. If f (x) 6C f (y), then f (x + z) = f (x) + f (z) 6
f (y)+ f (z) = f (y+ z) and f (xz) = f (x) f (z) 6 f (y) f (z) = f (yz), which verifies that r( f ) is
additive and multiplicative. Since f is order preserving, x6B y in B implies f (x)6C f (y). This
shows that r( f ) contains 6B, which completes the proof of the lemma.

Given a subset S of B+×B+, we denote by 〈S〉 the smallest additive and multiplicative
preorder r on B+ that contains 6B and S. Note that 〈S〉 is well-defined since the intersection of
additive and multiplicative preorders is an additive and multiplicative preorder. Thus

〈S〉 =
⋂

r

where r ranges over all additive and multiplicative preorders of B+ that contain both 6B and S.

Proposition 5.3.2. Let B be an ordered blueprint and r = 〈S〉 the additive and multiplicative
preorder on B+ generated by a subset S a subset of B+×B+. Then there exists an ordered
blueprint B�r and a surjective morphism π : B→ B�r such that π+(x)6B�r π

+(y) if and only if
x6r y for all x,y ∈ B+. Every morphism f : B→C of ordered blueprints such that f (x)6C f (y)
whenever (x,y) ∈ S factors into f ◦π for a unique morphism f : B�r→C.
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Proof. As a first step, we show that c = {(x,y) ∈ B+×B+|x ≡r y} is a congruence on B+. It
is evidently reflective and symmetric. To verify transitivity, consider x ≡r y and y ≡r z, i.e.
x 6r y6r z and z6r y6r x. By the transitivity of r, we conclude that x ∼c z, which show that
c is transitive. To verify additivity and multiplicativity, consider x ≡r y, i.e. x 6r y and y 6r x.
Then we have x+ z6r y+ z and y+ z6r x+ z for every z ∈ B+ and thus x+ z≡r y+ z, which
establishes the additivity of c. Similarly, we have xz 6r yz and yz 6r xz for every z ∈ B+ and
thus xz ≡r yz, which establishes the multiplicativity of c. To conclude, this verifies that c is a
congruence.

Let π : B+→ B+/c be the quotient map. As a second step, consider x,x′,y,y′ ∈ B+ with
x 6r y, π(x) = π(x′) and π(y) = π(y′). Then we have x′ 6r x 6r y 6r y′ by the definition of c,
and thus x′ 6r y′ by the transitivity of r. This shows that we can define a relation r on B+ = B+/c
by the rule π(x)6r π(y) if and only if x6r y.

It is easily seen that r inherits the properties of an additive and multiplicative preorder from
r. If π(x)≡B�r π(y), then x∼c y and thus π(x) = π(y) by the definition of c. Thus the preorder r
is antisymmetric and turns B+ into an ordered semiring. Together with the multiplicative subset
B• = π(B•), we obtain an ordered blueprint B�r= (B•,B+,r).

It is evident that the quotient map π is a morphism of ordered blueprints π : B→ B�r. By
the definition of c, we have π+(x)6B�r π

+(y) if and only if x6r y as claimed.
We are left with the verification of the universal property of π : B→ B. Let f : B→C be a

morphism of ordered blueprints such that f (x)6C f (y) whenever (x,y) ∈ S. Since π : B→ B�r
is surjective, a morphism f : B�r → C with f = f ◦ π is necessarily uniquely defined by
f (π(x)) = f (x). We are left with verifying the existence of f .

By Lemma 5.3.1, the relation r′ = {(x,y) ∈ B+× B+| f (x) 6C f (y)} is an additive and
multiplicative preorder on B. It contains S by our assumptions on f and it contains 6B since f
is order preserving. Thus r′ contains r= 〈S〉. This means, first of all, that f : B+→C+ factors
through π : B+→ B+/c as a semiring morphism by Proposition 2.4.4. It further implies that f
is order preserving, i.e. a morphism of ordered semirings. Finally, it is evident that f (B•) is a
subset of C•. This finishes the proof of the proposition.

A quotient of an ordered blueprint B is an equivalence class of surjective morphisms f : B→C
of ordered blueprints where two morphism f : B→C and f ′ : B→C′ are equivalent if there is
an isomorphism g : C→C′ such that f ′ = g◦ f .

As a consequence of Lemma 5.3.1 and Proposition 5.3.2, we see that for an ordered blueprint
B, the associations

{
additive and multiplicative

preorders on B+ containing 6B

}
←→

{
quotients of B

}

r 7−→ B→ B�r
r( f ) 7−→ f : B�C

are mutually inverse bijections.

Notational conventions

Proposition 5.3.2 allows us to construct ordered blueprints from an algebraic blueprint B by
endowing a set of relation on B+, by which we mean a subset of B+×B+. Typically, we write
such relations as ∑ai 6 ∑b j where we implicitly assume that ai,b j ∈ B. Note that we can
represent every element x ∈ B+ as a sum ∑ai with ai ∈ B. If S = {∑al,i 6 ∑bl, j}l∈I is a set of
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relations on B+, then
B�〈S〉 = B�〈∑al,i 6 ∑bl, j〉

is an ordered blueprint satisfying the relations in S. We write ∑ai ≡ ∑b j for ∑ai 6 ∑b j and
∑b j 6 ∑ai. Note that distinct elements a,b ∈ B might be identified in B�〈S〉.

Example 5.3.3. This notation allows us to define ordered blueprints such as

Bpos = B�〈06 1〉 and Nmon = N•�〈a6 b+ c |a = b+ c in N〉.

More explanations on (−)pos and (−)mon can be found in section 5.6.

5.4 Axiomatic ordered blueprints

The original definition of an ordered blueprint in [Lor15] differs from the approach taken in
this text, but produces an equivalent notion of ordered blueprints. We will the definition of
[Lor15] and explain the relationship between these two approaches in this section. To distinct
the objects from [Lor15] from the ones in this text, we call them axiomatic ordered blueprints in
the following.

Definition 5.4.1. An axiomatic ordered blueprint is a monoid with zero A together with a
subaddition on A, which is a preorder R on the set N[A]+ = {∑ai|ai ∈ A} of finite formal sums
of elements of A that satisfies for all x,y,z, t ∈ N[A] and a,b ∈ A that

(1) x6 y and z6 t implies x+ z6 y+ t and xz6 yt,

(2) a≡ b implies a = b as elements of A, and

(3) 0A ≡ 0N[A], i.e. the zero of A is equivalent to zero of N[A],

where we write x6 y for (x,y)∈R and a≡ b for a6 b and b6 a. We also write B• for A and say
that x6 y holds in B if (x,y) ∈ R. A morphism between axiomatic ordered blueprints B and C is
a morphism f : B•→C• of monoids with zero such that for all ai,b j ∈ B• with ∑ai 6 ∑b j in B,
we have ∑ f (ai)6 ∑ f (b j) in C. Let AxOBlpr be the category of axiomatic ordered blueprints.

From axiomatic ordered blueprints to ordered blueprints and back

Every ordered blueprint gives rise to an axiomatic ordered blueprint and, vice versa, an ordered
blueprint can be recovered from its associated axiomatic ordered blueprint. In particular, note
that both the information about the ambient semiring B+ and the partial order 6 on B+ of an
ordered blueprint B is bundled together in the subaddition R.

In the following, we define two mutually inverse functors (−)ax : OBlpr→ AxOBlpr and
(−)ob : AxOBlpr→ OBlpr. We omit several details in the constructions of these functors and
leave their verification as an exercise to the reader.

Let B = (B•,B+,6) be an ordered blueprint. We set

RB =
{
(∑ai,∑b j) ∈ N[B•]×N[B•]

∣∣ ∑ai 6 ∑b j in (B+,6)
}

and define the axiomatic ordered blueprint associated with B as Bax = (B•,RB). Let f : B→C
be a morphism of ordered blueprints. We define the associated morphism of axiomatic ordered
blueprints as f ax = f • : B•→C•. This finishes the construction of the functor (−)ax : OBlpr→
AxOBlpr.
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We turn to the construction of (−)ob : AxOBlpr→ OBlpr. Let B = (A,R) be an axiomatic
ordered blueprint. Since 0A ≡ 0N[A], the subaddition R defines an additive and multiplicative
preorder r on A+ = N[A]/〈0A ≡ 0N[A]〉. If we identify A with the ordered blueprint (A,A+,=),
then r contains clearly the trivial partial order =. By Proposition 5.3.2, we can form the quotient
of A by r. We define Bob = A�r.

A morphism f : B→C of axiomatic ordered blueprints yields a morphism f • : B•→C•

of monoids with zeros. Composing f • with the quotient map C• → Cob yields an ordered
blueprint morphism B• → Cob, which factors through a unique ordered blueprint morphism
f ob : Bob→Cob since f preserves the subadditions of B and C. This finishes the construction of
the functor (−)ob.

Exercise 5.4.2. Show that the functors (−)ax and (−)ob are well-defined and that they are
mutually inverse equivalences of categories between OBlpr and AxOBlpr.

Exercise 5.4.3. Let B = (A,R) be an axiomatic ordered blueprint. Show that the relation
c = {(∑ai,∑b j)|∑ai ≡ ∑b j in B} is a congruence on the semiring N[A] and that (Bob)+ is
isomorphic to N[A]/c.

5.5 Categorical constructions

In this section, we construct free ordered blueprints and tensor products, products and coprod-
ucts, equalizers and coequalizers. As a consequence, this shows that OBlpr is complete and
cocomplete. Some details are left as an exercise.

Let B be an ordered blueprint and S = {Ti}i∈I be a set. We define the free B-algebra in S as
the ordered blueprint

B[Ti]i∈I = B[S] = B•[S]�〈∑ai 6 ∑b j |ai,b j ∈ B• and ∑ai 6 ∑b j in B〉

where we consider B as a subset of B[S]. The free algebra B[S] comes together with an injective
morphism ιB : B→ B[S] of ordered blueprints and an injection ιS : S→ B[S].

Exercise 5.5.1. Show that (B[S])• = B•[S] and (B[S])+ = B+[S]. Show that the partial order of
B[S] is the smallest additive and multiplicative partial order on B+[S] that contains all relations
x6 y that hold in (B+,6).

Lemma 5.5.2. For every ordered blueprint morphism fB : B→C and every map fS : S→C, there
is a unique morphism f : B[S]→C of ordered blueprints such that fB = f ◦ ιB and fS = f ◦ ιS.

Proof. The morphism fB : B→C yields a morphism f • : B•→C• of monoids with zero and
fS : S→C restricts to a map f •S : S→C• by identifying C with its underlying set C•.

By Exercise 3.2.5, there is a unique morphism f • : B•[S]→C• of monoids such that f •B =
f • ◦ ι•B and f •S = f • ◦ ι•S.

We can identify the monoid with zero C• with the algebraic blueprint (C•,(C•)+,=), which
comes with a canonical morphism into C that extends the identity map ιC : C•→C. Composing
this morphism with f • yields a morphism f̃ : B•[S]→ C. Since C• → C is a bijection, f̃ is
uniquely determined by f •.

Since f : B→ C is a morphism, we have that if x 6 y in B, then f̃ (x) 6 f̃ (y) in C. By
Proposition 5.3.2, the morphism f̃ factors uniquely through B[S] =B•[S]�r where r= {(x,y) |x6
y in B}. This completes the proof of the lemma.
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Let fC : B→C and fD : B→ D be two ordered blueprint morphisms. We define the tensor
product of C and D over B as

C⊗B D = C•⊗B• D•�r

where r is the additive and multiplicative preorder on (C•⊗B• D•)+ that is generated by all
relations ∑ai⊗ 1 6 ∑b j⊗ 1 for which ∑ai 6 ∑b j in C and all relations 1⊗∑ck 6 1⊗∑dl
for which ∑ck 6 ∑dl in D. The tensor product C⊗B D comes together with the morphism
ιC : C→C⊗B D that sends a to a⊗1 and the morphism ιD : D→C⊗C D that sends a to 1⊗a.

Lemma 5.5.3. The tensor product C⊗B D is the colimit, or pushout, of C← B→ D.

Proof. Consider ordered blueprint morphisms gC : C→ E and gD : D→ E such that gC ◦ fC =
gD◦ fD. By Exercise 3.2.2, there is a unique morphism g• : C•⊗B•D•→ E• such that g•C = g•◦ι•C
and g•D = g• ◦ ι•D. Composing g• with the canonical morphism E• → E yields a morphism
g̃ : C•⊗B• D•→ E, which is uniquely determined by g•.

Given a generator x⊗16 y⊗1 of r, coming from a relation x6 y in C, then g+C (x)6 g+C (y)
and thus g̃+(x⊗1)6 g̃+(y⊗1). The same holds for a generator 1⊗ x 6 1⊗ y coming from a
relation x6 y in D. By Proposition 5.3.2, the morphism g̃ factors uniquely through the quotient
C⊗B D =C•⊗B• D•�r.

This shows that there is a unique morphism g : C⊗B D→ E with gC = g◦ ιC and gD = g◦ ιD,
which completes the proof of the lemma.

Exercise 5.5.4. Show that (C⊗B D)+ =C+⊗+
B+ D+. Give an example for which the canonical

map C•⊗B• D•→ (C⊗B D)• is not an isomorphism.

Exercise 5.5.5. Let B be an ordered blueprint and {Ti}i∈I a set. Show that B[Ti]' B⊗F1 F1[Ti].

In the following, we construct products and coproducts, equalizer and coequalizer. We leave
the verification of their universal properties to the reader, see Exercise 5.5.6.

Let {Bi}i∈I be a family of ordered blueprints. The product of the Bi is the ordered blueprint

∏
i∈I

Bi = ∏B•i �〈∑(ai,k)6 ∑(bi,l) | ∑ai,k 6 ∑bi,l in Bi for all i ∈ I〉,

together with the coordinate projections pr j : ∏Bi→ B j.
Let ι•j : B•j →

⊗
B•i be the canonical inclusion of B•j into the coproduct of the B•i . The

coproduct of the Bi is the ordered blueprint
⊗

i∈I

Bi =
⊗

B•i �〈∑ ι j(ak)6 ∑ ι j(bl) | j ∈ I,ak,b j ∈ B•j and ∑ak 6 ∑bl in B j〉,

together with the coordinate inclusions ι j : B j→
⊗

Bi induced by ι•j .
Let f : B→C and g : B→C be two ordered blueprint morphisms. The equalizer of f and g

is the ordered blueprint

eq( f ,g) = eq( f •,g•)�〈∑ai 6 ∑b j | ∑ai 6 ∑b j in B〉,

together with the inclusion eq( f ,g)→ B.
The coequalizer of f and g is the ordered blueprint

coeq( f ,g) = C�〈 f (a)≡ g(a) |a ∈ B〉,

together with the quotient map C→ coeq( f ,g).
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Exercise 5.5.6. Verify the universal properties for the product, the coproduct, the equalizer and
the coequalizer.

Exercise 5.5.7. Let f : B→C be a morphism of ordered blueprints. Show that f is a monomor-
phism if and only if both f+ is injective. Show that f is an epimorphism if f • is surjective.
Show that if f is an isomorphism, then both f • and f+ are bijective. Give an example of an
epimorphism that is not surjective and an example of a bijection that is not an isomorphism.

5.6 Reflective subcategories

In this section, we introduce and investigate various subcategories of OBlpr, which are of interest
in later parts of these notes. Each of them is either reflective or coreflective.

Ordered semirings

As already observed before, every ordered semiring (R,6) can be considered as an ordered
blueprint (R•,R,6). Since a morphism f : (R,6)→ (S,6) maps R• to S•, it is evidently a
morphism between the associated ordered blueprint. This defines a functor ι : OSRings→OBlpr.

Lemma 5.6.1. The functor ι : OSRings→OBlpr has a left inverse and left adjoint ρ : OBlpr→
OSRings that maps an ordered blueprint B to the ordered semiring (B+,6). Thus we can identify
OSRings with a reflective subcategory of OBlpr.

Proof. According to the claim of the lemma, we define ρ(B) = (B+,6B) for an ordered blueprint
B. An ordered blueprint morphism f : B→ C is, in particular, an order preserving semiring
morphism ρ( f ) : (B+,6B)→ (C+,6C). This defines ρ : OBlpr→ OSRings as a functor.

If (R,6) is an ordered semiring, then its image under ι is B = (R•,R,6) and evidently
ρ(B) = (R,6) is naturally isomorphic to (R,6). This shows that ρ is left inverse to ι and allows
us to identify the category SRings with its essential image in OBlpr.

The ordered semiring ρ(B), identified with the ordered blueprint ((B+)•,B+,6B), comes
together with a canonical morphism ηB : B→ ρ(B), which is an isomorphism if B is in the
essential image of ι, i.e. if B• = B+. Composing a morphism ρ(B)→ R with ηB yields a map

Φ : Hom(ρ(B),R) −→ Hom(B,R).

It is easily verified that sending a morphism f : B→ R to ρ( f ) : ρ(B)→ ρ(R) = R defines an
inverse bijection to Φ. This shows that ρ is left adjoint to ι and completes the proof of the
lemma.

Algebraic blueprints

In this section, we inspect the properties of the association that sends a blueprint (B•,B+) to
its associated ordered blueprint (B•,B+,=). First note that a blueprint morphism f : B→C is
order preserving with respect to the trivial partial orders on B+ and C+. This defines a functor
ι : Blpr→ OBlpr.

Conversely, we can associate an algebraic blueprint associate with every ordered blueprint in
different ways, which will give rise to a right adjoint and a left adjoint functor to ι.
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Definition 5.6.2. Let B be an ordered blueprint. The algebraic core of B is the blueprint

Bcore = B•�〈∑ai ≡ ∑b j|∑ai ≡ ∑b j in B〉.
The algebraic hull of B is the the blueprint

Bhull = B•�〈∑ai ≡ ∑b j|∑ai 6 ∑b j in B〉.
Note that (Bcore)• = B• and (Bcore)+ = B+. In other words, the algebraic core of an ordered

blueprint B is Bcore = (B•,B+,=) where we replace the partial order6B of B by the trivial partial
order. The algebraic hull of B is equal to the quotient of the blueprint (B•,B+) by the congruence
c= 〈x≡ y|x6 y in B〉.

If we consider Bcore as an ordered blueprint, then the identity map (Bcore)+→ B+ defines a
canonical morphism Bcore→ B. If we consider the Bhull as an ordered blueprint, then the quotient
map B+→ (Bhull)+ defines a canonical morphism B→ Bhull.

Lemma 5.6.3. Every ordered blueprint with −1 is an algebraic blueprint.

Proof. By multiplication with −1, a relation ∑ai 6 ∑b j implies that ∑−ai 6 ∑−b j and thus

∑b j ≡ ∑b j +∑−ai +∑ai 6 ∑b j +∑−b j +∑ai ≡ ∑ai,

which shows that, indeed, ∑ai ≡ ∑b j.

Lemma 5.6.4. The functor ι : Blpr → OBlpr has a right adjoint and left inverse (−)core :
OBlpr→ Blpr that sends an ordered blueprint B to its algebraic core Bcore and it has a left
adjoint and left inverse (−)hull : OBlpr→ Blpr that sends an ordered blueprint B to its algebraic
hull Bhull. Thus we can identify Blpr with a reflective and coreflective subcategory of OBlpr.

Proof. Every morphism f : B→C of ordered blueprints is tautologically a morphism between
the algebraic cores Bcore = (B•,B+) and Ccore = (C•,C+). This defines (−)core as a functor.

Let B be an ordered blueprint and εB : Bcore→ B be the morphism extending the identity map.
If B is algebraic, then εB is an isomorphism, which shows that (−)core is left inverse to ι.

Let B be an algebraic blueprint and C an ordered blueprint. Composing a morphism f : B→
Ccore with εC : Ccore→C defines a map

Φ : Hom(B,Ccore) −→ Hom(B,C).

It is easily verified that sending a morphism f : B→C to f core : B = Bcore→Ccore defines an
inverse bijection to Φ. This shows that (−)core is right adjoint to ι.

We turn to the definition of (−)hull for morphisms. Let f : B→C be a morphism of ordered
blueprints. Composing with the quotient map C→Chull yields a morphism f̃ : B→Chull. Let
c = 〈x ≡ y|x 6 y in B〉. Since f is order preserving and by the definition of Chull, we have
that f̃ (x)≡ f̃ (y) in Chull whenever x≡c y in B. Applying Proposition 5.3.2 yields a morphism
f hull : Bhull→Chull, which is uniquely determined by the property that f̃ factors into the quotient
map B→ Bhull followed by f hull. This defines (−)hull as a functor.

Let B be an ordered blueprint and ηB : B→ Bhull be the quotient map. If B is algebraic, then
ηB is an isomorphism, which shows that (−)hull is left inverse to ι.

Let B be an ordered blueprint and C an algebraic blueprint. Composing a morphism f :
Bhull→C with ηB : Bhull→ B defines a map

Ψ : Hom(Bhull,C) −→ Hom(B,C).

It is easily verified that sending a morphism f : B→C to f hull : Bhull→Chull = C defines an
inverse bijection to Ψ. This shows that (−)hull is left adjoint to ι and completes the proof of the
lemma.
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Monomial blueprints

Let B be an ordered blueprint. A (left) monomial relation on B is a relation of the form a6 ∑b j

in B where we assume that a,b j ∈ B•, as usual. Monomial relations appear in the definition of a
valuation, which motivates the following definition. We will apply this construction to extend
the notion of valuations in Chapter 6.

Definition 5.6.5. Let B be an ordered blueprint. The left monomial ordered blueprint or, for
short, the monomial blueprint associated with B is the ordered blueprint

Bmon = B•�〈a6 ∑b j |a6 ∑b j holds in B〉.

An ordered blueprint B is monomial if the canonical morphism Bmon→ B is an isomorphism.
We define OBlprmon ⊂ OBlpr as the full subcategory of monomial blueprints.

Note that canonical morphism Bmon→ B is an isomorphism between the respective underly-
ing monoids, but that (Bmon)+ = (B•)+→ B+ is in general not injective.

Lemma 5.6.6. The category OBlprmon is a coreflective subcategory of OBlpr whose coreflection
(−)mon : OBlpr→ OBlprmon sends an ordered blueprint B to Bmon.

Proof. Let f : B→C be a morphism of ordered blueprints. Then f • : B•→C• induces a blueprint
morphism f̃ : (B•,(B•)+)→ (C•,(C•)+). Consider a generator a6 ∑b j of the preorder of Bmon.
Then this relation also holds in B and therefore f (a)6 ∑ f (b j) in C. By the definition of Cmon,
this relation holds also in Cmon. This shows that f̃ defines a morphism f mon : Bmon→Cmon of
ordered blueprints, which defines the functor (−)mon.

By definition, OBlprmon is a full subcategory of OBlpr. Therefore we are left with showing
that (−)mon is right adjoint to the embedding of OBlprmon into OBlpr as a subcategory.

Let B be a monomial blueprint and C an ordered blueprint. Composing a morphism f : B→
Cmon with the canonical morphism Cmon→C yields a map

Φ : Hom(B,Cmon) −→ Hom(B,C).

Since (Cmon)• =C• and f • = Φ( f )• as maps between the underlying monoids, it follows that
an inverse bijection to Φ is given by sending a morphism g : B→C to gmon : B = Bmon→Cmon.
This show that (−)mon is right adjoint to the embedding OBlprmon ↪→ OBlpr, which completes
the proof of the lemma.

Example 5.6.7. Every monoid B = (A,A+,=) with zero is a monomial blueprint. Some other
examples of monomial blueprints are F1

pos = {0,1}�〈0 6 1〉 and F±1 = {0,1, ε}�〈0 6 1+ ε〉
with ε2 = 1.

The most interesting class of examples for the purpose of tropicalizations are monomial
blueprints associated with rings. Let B = (R•,R,=) be a ring. Then the associated monomial
blueprint is

Bmon = B•�〈c6 a+b |c = a+b in R〉

Totally positive blueprints

Definition 5.6.8. A totally positive blueprint is an ordered blueprint B that satisfies 06 1. We
denote the full subcategory of totally positive blueprints in OBlpr by OBlprpos.
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Let B be an ordered blueprint. The associated totally positive blueprint is the totally positive
blueprint

Bpos = B�〈06 1〉.

Note that the associated totally positive blueprint comes with a canonical morphism B→ Bpos

and that B is totally positive if and only if B→ Bpos is an isomorphism. Note further that Bpos is
isomorphic to the tensor product B⊗F1 F

pos
1 and that the canonical morphism B→ Bpos coincides

with the canonical inclusion of B→ B⊗F1 F
pos
1 .

Lemma 5.6.9. Let B be an ordered blueprint. Then the following are equivalent.

(1) B is totally positive.

(2) 06 a for all a ∈ B.

(3) ∑ai +∑ck 6 ∑b j implies ∑ai 6 ∑b j.

(4) There exists a morphism Fpos
1 → B.

The morphism Fpos
1 → B is unique in case it exists.

Proof. Let B satisfy (1). Multiplying the relation 06 1 by a ∈ B yields (2).
Let B satisfy (2). A relation ∑ai+∑ck 6∑b j implies ∑ai ≡∑ai+∑06∑ai+∑ck 6∑b j,

which is (3).
Let B satisfy (3). Then 0+1 6 1 implies 0 6 1 and the unique morphism F1→ B factors

uniquely through Fpos
1 = F1�〈06 1〉. Thus (4).

Let B satisfy (4). Since 0 6 1 in Fpos
1 , the existence of a morphism Fpos

1 → B implies that
06 1 in B. Thus (1).

A morphism Fpos
1 → B is unique since it is determined by the unique images of 0 and 1.

Corollary 5.6.10. Let B be an ordered blueprint.

(1) If a6 0 in B, then a = 0 in Bpos.

(2) If 1+∑ck 6 0 for some ck in B, then Bpos is trivial. In particular, if B is with −1, then
Bpos is trivial.

(3) The preorder 〈06 1〉 on B is equal to

r =
{
(∑ai,∑b j)

∣∣ ∑ai +∑ck 6B ∑b j for some ck ∈ B
}
.

(4) The quotient map B→ Bpos is an isomorphism between the respective underlying monoids
if and only if

a+∑ck 6 b and b+∑dl 6 a imply a = b in B.

Proof. By Lemma 5.6.9 (2), we have 0 6 a for all a in Bpos. If a 6 0 in B, then a ≡ 0 in Bpos,
which shows (1).

By Lemma 5.6.9 (3), a relation 1+∑ck 6 0 in B implies 16 0 in Bpos. Thus 0≡ 1 by (1),
which is equivalent with Bpos = 0. This shows (2).

We turn to the proof of (3). It is easily verified that r is an additive and multiplicative preorder
on B+. Inserting ck = 0 in the definition of r yields that 6B is contained in r. Since 0+16B 1,
we have 06 1 in r. This shows that 〈06 1〉 is contained in r.
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Conversely, consider a relation ∑ai +∑ck 6B ∑b j in B and let π : B→ Bpos be the quotient
map. By Lemma 5.6.9, we have ∑π(a j)6 ∑π(b j) in Bpos and thus ∑ai 6 ∑b j in 〈06 1〉. This
completes the proof of (3).

We turn to the proof of (4). Assume that π : B→ Bpos is bijective and consider relations of
the form a+∑ck 6 b and b+∑dl 6 a in B. By Lemma 5.6.9 (3), we conclude that π(a)6 π(b)
and π(b)6 π(a) in Bpos and thus π(a) = π(b) by the antisymmetry of 6. Since π is a bijection,
we conclude that a = b in B.

To show the converse implication, first note that it is enough to show that π is injective since
it is surjective as a quotient map and since every bijective monoid morphism is an isomorphism.
Consider a,b ∈ B such that π(a) = π(b), i.e. π(a) 6 π(b) and π(b) 6 π(a). By (3), we have
a+∑ck 6B b and b+∑B dl 6 a for some ck and dl in B. Using the assumptions on B, we
conclude that a = b, which shows that π is injective. This shows (4).

Example 5.6.11. The examples of most importance for the text are the totally positive blueprints
associated with the nonnegative real numbers R>0, the tropical numbers T and the Boolean
numbers B. By Lemma 5.6.10, each of the quotient maps R>0→ Rpos

>0 , T→ Tpos and B→ Bpos

are bijections and the partial order on the associated totally positive blueprint is given by x6 y if
and only if x+ t = y for some t. We conclude that in each case, we obtain the natural total order,
which was already the theme of Lemma 5.1.4.

See Exercise 5.6.13 for the general relationship between the natural preorder of a semiring,
as considered in Lemma 5.1.4, and the associated totally positive blueprint.

We have already seen that Bpos is canonically isomorphic to B⊗F1 F
pos
1 . The identification

(−)pos = −⊗F1 F
pos
1 extends (−)pos to a functor. Since Bpos is totally positive, its image is

contained in OBlprpos.

Lemma 5.6.12. The category OBlprpos is a reflective subcategory of OBlpr whose reflection is
(−)pos : OBlpr→ OBlprpos.

Proof. By its definition, OBlprpos is a full subcategory of OBlpr. Let B be an ordered blueprint
and C a totally positive blueprint. The composition of a morphism f : Bpos→C with the quotient
map B→ Bpos yields a map

Φ : Hom(Bpos,C) −→ Hom(B,C).

Since the canonical morphism C→Cpos is an isomorphism, Φ possesses an inverse, which sends
a morphism g : B→C to gpos : Bpos→Cpos =C. It is easily verified that this latter association is
indeed an inverse to Φ. This shows that (−)pos is left adjoint to the embedding of OBlprpos in
OBlpr as a subcategory, which completes the proof of the lemma.

Exercise 5.6.13. Let R be a semiring and B = (R•,R,=) the associated ordered blueprint. Show
that the natural preorder on R is equal to the relation 〈0 6 1〉 on B+ = R. Let (R/c,6) be
the ordered semiring considered in Exercise 5.1.6 and B′ = ((R/c)•,R/c,6) be the associated
ordered blueprint. Conclude that B′ ' Bpos.

Exercise 5.6.14. Let R be a semiring and 6 be the preorder on R that is defined by x6 y if and
only if x+ t = y for some t ∈ R; cf. Lemma 5.1.4. Use Corollary 5.6.10 to reprove that 6 is a
partial order if and only if x = x+ s+ t implies x = x+ s.
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Strictly conic blueprints

In this section, we encounter the question under which conditions B can be recovered from Bpos.

Definition 5.6.15. A strictly conic (ordered) blueprint is an ordered blueprint B such that the
relations ∑ai +∑ck 6 ∑b j and ∑b j +∑dl 6 ∑ai imply ∑ai = ∑b j in B+. We denote the full
subcategory of strictly conic blueprints in OBlpr by OBlprconic.

Let B be an ordered blueprint. The strictly conic (ordered) blueprint associated with B is the
ordered blueprint Bconic = B�r where r is generated by

{
∑ai ≡ ∑b j

∣∣ ∑ai +∑ck 6 ∑b j and ∑b j +∑dl 6 ∑ai
}
.

Lemma 5.6.16. The category OBlprconic is a reflective subcategory of OBlpr whose reflection
sends B to Bconic.

Proof. As a first step, we define (−)conic for morphisms. Let f : B→C be an ordered blueprint
morphism. The composition with the quotient map C→ Cconic yields a morphism f̃ : B→
Cconic. Given relations ∑ai +∑ck 6 ∑b j and ∑b j +∑dl 6 ∑ai in B yield relations ∑ f (ai)+

∑ f (ck) 6 ∑ f (b j) and ∑ f (b j)+∑ f (dl) 6 ∑ f (ai) in C and thus ∑ f (ai) = ∑ f (b j) in Bconic.
By Proposition 5.3.2, f̃ factors into the quotient map B→ Bconic, followed by a unique morphism
f conic : Bconic→Cconic of strictly conic blueprints. This defines (−)conic as a functor.

Since the inclusion functor ι : OBlprconic → OBlpr is full by definition, we are left with
showing that (−)conic is left adjoint to ι. Let B be an ordered blueprint and C a strictly conic
blueprint. The composition with the quotient map B→ Bconic defines a map

Φ : Hom(Bconic,C) −→ Hom(B,C).

It is easily verified that C =Cconic and that the association that sends a morphism f : B→C to
f conic : Bconic→Cconic =C is an inverse bijection of Φ. This shows that (−)conic is left adjoint
to ι and completes the proof of the lemma.

In order to investigate the relation between an ordered blueprint B and (Bpos)core, consider
the commutative diagram

B

Bcore Bpos

(Bpos)core

α
pos
Bαcore

B

βB=(α
pos
B )core αcore

Bpos

where αcore
C : Ccore→C denotes the canonical morphism induced by the identity map, with C

standing for B and Bpos, and where αpos
B : B→ Bpos is the quotient map.

Proposition 5.6.17. The map βB is an isomorphism of blueprints if and only if B is strictly conic.

Proof. Assume that βB is an isomorphism. Since ∑ai +∑ck 6 ∑b j and ∑b j +∑dl 6 ∑ai in
B imply ∑ai ≡ ∑b j in Bpos, and therefore in (Bpos)core, this must also hold in Bcore as βB is an
isomorphism. By the definition of the algebraic core, ∑ai ≡ ∑b j in B, which shows that B is
strictly conic.

To prove the reverse direction, assume that B is strictly conic. By Corollary 5.6.10 (3), αpos
B

is an isomorphism between the underlying monoids. The maps αcore
B and αcore

Bpos are so, too, by the
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definition of the algebraic core. This shows that βB is an isomorphism between the underlying
monoids.

Given an equality ∑ai ≡ ∑b j in (Bpos)core, this must already hold in Bpos. By the definition
of Bpos, there must be relations of the form ∑ai +∑ck 6 ∑b j and ∑b j +∑dl 6 ∑ai in B. As
B is strictly conic, we have ∑ai ≡ ∑b j in B and therefore in Bcore. This shows that βB is an
isomorphism.

Corollary 5.6.18. Let B be a strictly conic ordered blueprint. Then (Bpos)core⊗Bcore B' B.

Proof. By Proposition 5.6.17, βB : Bcore→ (Bpos)core is an isomorphism and thus the claim.

Exercise 5.6.19. Let Blprconic ⊂ OBlpr be the full subcategory of strictly conic algebraic
blueprints and B an algebraic blueprint. Show that (Bpos)core is isomorphic to B if and only if
B is strictly conic. Conclude that (−)pos embeds Blprconic fully faithfully into OBlprpos, with
left-inverse (−)core.

Corollary 5.6.20. Let B be a semiring and 6 the natural preorder that is defined by x6 y if and
only if x+ t = y for some t ∈ B. Then the following are equivalent.

(1) B is strictly conic.

(2) βB : B = Bcore→ (Bpos)core is an isomorphism.

(3) x+ s+ t = x implies x+ s = x.

(4) The preorder 6 is antisymmetric.

(5) B→ Bpos is an isomorphism between the underlying monoids.

Proof. The equivalence of (1) and (2) is Proposition 5.6.17. The equivalence of (3) and (4) is
Lemma 5.1.4 (2). The equivalence of (3) and (5) is Corollary 5.6.10 (4).

The equivalence of (1) with (3) is a mere reformulation: since B is a semiring, all sums
are contained in B and every inequality is an equality. Thus with x = ∑ai, y = ∑b j, s = ∑ck,
t = ∑dl , the conditions ∑ai+∑ck 6∑b j and ∑b j +∑d j 6∑ai become x+ s = y and y+ t = x.
Eliminating y yields x+ s+ t = x. Similarly, ∑ai = ∑b j is equivalent to x = x+ s. Thus the
equivalence of (1) and (3).

Recall that a semiring is strict if x+ y = 0 implies x = 0. A nonnegative blueprint is a
blueprint B such that the only element a ∈ B with a6 0 is a = 0.

Lemma 5.6.21. The following holds true.

(1) A strictly conic semiring is strict.

(2) An idempotent algebraic blueprint is strictly conic.

(3) A totally positive blueprint is strictly conic.

(4) A nonnegative monomial blueprint is strictly conic.

Proof. Let B be a strictly conic semiring. Since x + y = 0 implies 0+ x + y = 0 and thus
x = 0+ x = 0, B is a strict semiring. Thus (1).
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Let B be an idempotent algebraic blueprint and assume that ∑ai +∑ck = ∑b j and ∑b j +

∑dl = ∑ai. Then

∑ai = ∑ai +∑ai = ∑ai +∑b j +∑dl = ∑ai +∑b j +∑b j +∑b j +∑dl

= ∑ai +∑ai +∑b j +∑b j +∑ck +∑dl

= ∑ai +∑ai +∑ai +∑b j +∑ck = ∑ai +∑b j +∑ck = ∑b j +∑b j = ∑b j,

which shows that B is strictly conic. Thus (2).
If B is totally positive, then the relations ∑ai +∑ck = ∑b j and ∑b j +∑dl = ∑ai imply

∑ai 6 ∑b j and ∑b j 6 ∑ai. Thus ∑ai = ∑b j as desired. This shows (3).
Let B be non-negative and monomial and consider ∑ai +∑ck 6 ∑b j and ∑b j +∑dl 6 ∑ai

where we assume that ai,b j,ck,dl are non-zero. These relations are generated by left monomial
relations of the form a′ 6 ∑b′j, which contain at least one nonzero term b′j if a′ is nonzero since
B is nonnegative. Therefore #{ai,ck}6 #{b j} and #{b j,dl}6 #{ai}, which is only possible if
{ck}= {dl}= /0. Consequently, ∑ai = ∑b j, which shows that B is strictly conic as claimed in
(4).

Corollary 5.6.22. If B is an idempotent algebraic blueprint, then βB : Bcore→ (Bpos)core is an
isomorphism and the quotient map B→ Bpos is a bijection.

Proof. By Lemma 5.6.21, B is strictly conic and by Proposition 5.6.17, Bcore→ (Bpos)core is an
isomorphism. Consequently, we obtain a bijection Bcore = (Bpos)core→ Bpos, which factors into
the canonical morphisms Bcore→ B and B→ Bpos. Since Bcore→ B is a bijection, we conclude
that B→ Bpos is also a bijection.

Example 5.6.23 (A strict semiring that is not strictly conic). The semiring R = N[S,T ]+�〈1+
S+T ≡ 1〉 is obviously a strict semiring. However, 1+S+T = 1 while 1+S 6= 1, which shows
that R is not strictly conic.

Exercise 5.6.24. Consider the following addition +t for the multiplicative monoid R•>0:

a+t b =

{
(at +bt)1/t if t ∈ [1,∞)
max{a,b} if t = ∞.

Show that R•>0 together with the addition +t is a strictly conic semiring Rt
>0. Conclude that

the quotient map Rt
>0→ (Rt

>0)
pos is a bijection for all t ∈ [1,∞]. Show that the partial order for

(Rt
>0)

pos is the natural total order for the nonnegative reals.
Note that R1

>0 = R>0 and that R∞
>0 = T. Show that the identity map T•→ R•>0 induces a

morphism (Tpos)mon→ (Rpos
>0 )

mon of ordered blueprints.

Ordered blueprints with unique weak inverses

Definition 5.6.25. Let B be an ordered blueprint and a ∈ B. A weak inverse of a is an element
b ∈ B such that 06 a+b. An ordered blueprint B is with unique weak inverses if every a ∈ B
has a unique weak inverse b ∈ B. We denote the weak inverse of 1 by ε. We denote by OBlpr±

the full subcategory of OBlpr whose objects are ordered blueprints with unique weak inverses.

Lemma 5.6.26. Let B be an ordered blueprint with unique weak inverses and ε the weak inverse
of 1. Then the following holds true.
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(1) The weak inverse of a ∈ B is εa.

(2) If a is a weak inverse of b, then b is a weak inverse of a.

(3) ε2 = 1.

Proof. Multiplying the relation 06 1+ε with a yields 06 a+εa; thus (1). Obviously, 06 a+b
implies 06 b+a; thus (2). It follows from (1) and (2) that both 1 and ε2 are weak inverses of ε.
By uniqueness of the weak inverse, we have (3).

Example 5.6.27. An initial object of OBlpr± is

F±1 = {0,1, ε}�〈06 1+ ε〉

where ε2 = 1. Another example is F1�〈06 1+1〉. Every blueprint with −1 is a blueprint with
unique weak inverses.

Exercise 5.6.28. Let B be a strict semiring. Show that B�〈0 6 1+ 1〉 is with unique weak
inverses.

Exercise 5.6.29. Let B be an ordered blueprint. Show that B is algebraic and with unique weak
inverses if and only if it is with −1.

The inclusion functor OBlpr± → OBlpr turns out to have a left adjoint and left inverse
(−)± : OBlpr→ OBlpr±, which can be described as follows.

Definition 5.6.30. Let B be an ordered blueprint. The associated ordered blueprint with unique
weak inverses is

B± = B⊗F1 F
±
1 �〈a≡ a′ |06 a+b and 06 a′+b for some b ∈ B⊗F1 F1

±〉.

Exercise 5.6.31. Let B be an ordered blueprint. Show that B± is with unique weak inverses.
Show that OBlpr± is a reflective subcategory of OBlpr whose reflection (−)± : OBlpr→OBlpr±

sends an ordered blueprint to its associated ordered blueprint with unique weak inverses.

Reversible ordered blueprints

There is an interesting subclass of ordered blueprints with unique weak inverses that satisfy a
reversibility for monomial relations. This class is of interest for its connections to hyperrings, cf.
section 5.7.

Definition 5.6.32. A reversible ordered blueprint is an ordered blueprint B that contains an
element ε with ε2 = 1 such that every relation b6 c+∑ai in B implies εc6 εb+∑ai. We denote
by OBlprrev ⊂ OBlpr the full subcategory of reversible ordered blueprints.

Example 5.6.33. The ordered blueprint F±1 is reversible with and an initial object in OBlprrev.
Every blueprint with −1 is reversible with ε=−1.

The ordered blueprint {0,1}�〈06 1+1,06 1+1+1〉 is with unique weak inverses since
06 1+ ε for ε= 1, but not reversible since 06 1+1+1, but not ε6 1+1.

Lemma 5.6.34. Every reversible ordered blueprint is with unique weak inverses. In particular,
ε is the weak inverse of 1 and uniquely determined.
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Proof. Let B be a reversible ordered blueprint and a∈B. Then a6 0+a implies 0= ε ·06 εa+a,
thus εa is a weak inverse of a. Assume that b is another weak inverse of a, i.e. 06 a+b. Then
reversibility yields εb6 a and εa6 b. Multiplication of the former relation with ε yields b6 εa
and thus b = εa. This shows that εa is the unique weak inverse of a.

In particular ε is the weak inverse of 1 and therefore uniquely determined. This completes
the proof of the lemma.

Definition 5.6.35. Let B be an ordered blueprint. We define the associated reversible ordered
blueprint as

Brev = B⊗F1 F
±
1 �〈εc6 εb+∑ai

∣∣b6 c+∑ai holds in B⊗F1 F
±
1 〉.

Exercise 5.6.36. Let B be an ordered blueprint. Show that Brev is reversible. Show that OBlprrev

is a reflective subcategory of OBlpr whose reflection sends an ordered blueprint to its associated
reversible ordered blueprint.

Exercise 5.6.37. Show that a reversible ordered blueprint is nonnegative, i.e. a 6 0 implies
a = 0. Show that a reversible and monomial ordered blueprint is strictly conic.

Exercise 5.6.38. Let B be an ordered blueprint with unique weak inverses whose partial order is
generated by relations of the form c6 a+b with a,b,c ∈ B•. Show that B is reversible.

Overview of subcategories

Using the previous results on the relations between the different subcategories of OBlpr, we can
illustrate some subcategories of OBlpr that are relevant to this text as in Figure 5.1. An inclusion
of areas indicates an inclusion of subcategories, and areas with empty intersection correspond to
subcategories that have only the trivial ordered blueprint in common. To be more precise, for
every intersection of areas in the diagram, there is a nontrivial ordered blueprint that is contained
in precisely those subcategories whose areas contain the intersection.

Note that the category HypRings of hyperrings and its embedding into OBlpr will be
discussed in the following section 5.7.

Exercise 5.6.39. Show that the subcategories whose areas in Figure 5.1 have empty intersection
have the trivial ordered blueprint as their only common object. Exhibit for every area of the
diagram in Figure 5.1 an ordered blueprint with exactly the corresponding properties. For
instance, find an ordered blueprint that is strictly conic with unique weak inverses, but that is
neither reversible nor monomial.

Exercise 5.6.40. Determine, which areas in Figure 5.1 contain a nontrivial cancellative ordered
blueprint. Insert an area in the diagram that represents the subcategory OBlprcanc.

5.7 Relations to other theories

In this section, we investigate the relation of ordered blueprints to halos and hyperfields.
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OBlpr

OBlprconic

Blpr SRingsBlpr± Blprrev

Blprinv Rings

OBlprpos

OBlprmon OBlpridem

Mon
HypRings

Figure 5.1: Some relevant subcategories of OBlpr

Halos

Paugam introduces in [Pau09] the notion of a halo, which allows us to consider absolute values
of fields as morphisms in a category. This was a guiding idea in the development of ordered
blueprints. Confer the introduction of [Lor15] for more details. It turns out that there exists a
fully faithful functor from Halos to OBlprmon.

A halo is an ordered semiring and a (multiplicative) halo morphism is an order preserving
multiplicative map f : B1→ B2 of ordered semirings such that f (0) = 0, f (1) = 1 and f (a+b)6
f (a)+ f (b). If we consider B1 and B2 as ordered semirings, then it is easily seen that a map
f : B1→B2 is a halo morphism if and only if the composition f ′ : Bmon

1 →B1→B2 is a morphism
of ordered blueprints.

By Lemma 5.6.6, f ′ factors uniquely through the morphism f mon : Bmon
1 →Bmon

2 of monomial
blueprints. This defines a functor (−)mon : Halos→ OBlprmon that sends a halo (R,6) to Bmon

where B = (R•,R,6) is the ordered blueprint associated with (R,6) as a semiring.

Exercise 5.7.1. Show that the functor (−)mon : Halos→ OBlprmon is fully faithful.

At the time of writing, it is not clear to the author if the category of halos contains tensor
products. Since the obvious attempt to extend the partial orders to the tensor product of the
underlying semirings fails to produce an object that satisfies the universal property of the tensor
product, it seems likely that Halos does not contain all tensor products. A rigorous proof of this
fact would be desirable.

As a consequence of the previous discussion, it seems unlikely that the embedding (−)mon :
Halos→ OBlprmon has a right or left adjoint, which would imply the existence of colimits since
in this case, Halos would be equivalent to a reflective or coreflective subcategory of OBlpr.

Hyperrings

Another concept that has been tied to tropical geometry in recent years is that of a hyperring.
Hyperrings first appeared in Krasner’s paper [Kra57], and its connections to tropical geometry
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were studied by Viro in [Vir11].

Definition 5.7.2. A commutative hypergroup is a set G together with a distinctive element 0 and
a hyperaddition, which is a map

� : G×G −→ P(G)

into the power set P(G) of G, such that for all a,b,c ∈ G,

• a�b is not empty, (nonempty sums)

• {a�d|d ∈ b�c}= {d�c|d ∈ a�b}, (associativity)

• 0�a = a�0 = {a}, (neutral element)

• there is a unique element −a in G such that 0 ∈ a�(−a), (inverses)

• a�b = b�a, (commutativity)

• c ∈ a�b if and only if (−a) ∈ (−c)�b. (reversibility)

Note that thanks to the commutativity and associativity, it makes sense to define hypersums
of several elements a1, . . . ,an unambiguously by the recursive formula

� n
i=1 ai =

{
b�an

∣∣b ∈ � n−1
i=1 ai

}
.

Definition 5.7.3. A (commutative) hyperring is a set R together with distinctive elements 0 and
1 and with maps � : R×R→ P(R) and · : R×R→ R such that

• (R,� ,0) is a commutative hypergroup,

• (R, ·,1) is a commutative monoid,

• 0 ·a = a ·0 = 0, and

• a · (b�c) = ab�ac

for all a,b,c ∈ R where a · (b�c) = {ad|d ∈ b�c}. A morphism of hyperrings is a map
f : R1→ R2 between hyperrings such that

f (0) = 0, f (1) = 1, f (a�b) ⊂ f (a)� f (b) and f (ab) = f (a) · f (b)

for all a,b ∈ R1 where f (a�b) = { f (c)|c ∈ a�b}. We denote the category of hyperrings by
HypRings.

We denote the underlying monoid of a hyperring R by R•. The unit group R× of a hyperring
R is the group of all multiplicatively invertible elements in R. A hyperfield is a hyperring K such
that K× = K−{0}.

Example 5.7.4. Every ring R can be considered as a hyperring by defining a�b = {a+b}. If R
is a field, the corresponding hyperring is a hyperfield.

The Krasner hyperfield is the hyperfield K = {0,1} whose addition is characterized by
1�1 = {0,1}. Note that all other sums and products are determined by the hyperring axioms.

The tropical hyperfield Thyp was introduced by Viro in [Vir11]. Its multiplicative monoid are
the non-negative real number R>0 together with the usual multiplication and its hyperaddition is
defined by the rule a�b = max{a,b} if a 6= b and a�a = [0,a].
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The sign hyperfield S is the multiplicative monoid S= {0,±1} and together with the hyper-
addition characterized by 1�1 = {1}, (−1)�(−1) = {−1} and 1�(−1) = {−1,0,1}. Note
that with this definition, the sign map R→ S becomes a morphism of hyperfields.

All of the previous examples of hyperfields are instances of the following general construction
of hyperfields as quotients of fields by a multiplicative subgroup. Let K be a field and G
a multiplicative subgroup of K×. Then the quotient K/G of K by the action of G on K by
multiplication carries a natural structure of a hyperfield: we have (K/G)× = K×/G as an abelian
group and

[a]� [b] =
{
[c]
∣∣ c = a′+b′ for some a′ ∈ [a],b′ ∈ [b]

}

for classes [a] and [b] of K/G.

The category of hyperrings embeds into OBlpr in the following way. Given a hyperring R,
we define its associated ordered blueprint as

Rob = R•�〈a6 ∑b j |a ∈ � b j〉.

Exercise 5.7.5. Show that every hyperring morphism f : R1 → R2 defines a morphism f ob :
Rob

1 → Rob
2 that maps a ∈ Rob

1 to f (a) ∈ Rob
2 . Show that this defines a fully faithful functor

(−)ob : HypRings→ OBlpr. Show that Rob is monomial and reversible for every hyperring R.

Exercise 5.7.6. Show that the reversibility axiom for the hyperaddition follows from the other
axioms of a hyperring.

Exercise 5.7.7. Let k be a field and v : k→R>0 a map. Show that v is a nonarchimedean absolute
value if and only if it is a morphism v : K→ Thyp of hyperfields where we identify R>0 and Thyp

as sets.

Exercise 5.7.8. Let R be a bipotent semiring, i.e. x+ y ∈ {x,y} for all x,y ∈ R; also cf. Exercise
5.1.5. Define a hyperaddition � by the rule x�y = {x+ y} if x 6= y and x�x = {z |x+ z = x}.
Show that R• together with � forms a hyperring, which we denote by Rhyp. Show that the
notation Thyp for the tropical hyperfield is compatible with this construction and that the Krasner
hyperfield K is equal to Bhyp.

Remark 5.7.9. Jun develops a scheme theory for hyperrings in [Jun18], which fits naturally
several aspects of tropical scheme theory. However, there are two drawbacks in this approach.
One is that it is not clear if tensor products for hyperrings exist. In so far, we do not know if
we can form fibre products of hyperring schemes. The other reason lies in the usage of prime
hyperring ideals as the underlying points of hyperring schemes. This leads to the problem that
the hyperring of global sections of the spectrum of a hyperring R is in general not equal to R.

Our approach of embedding hyperrings into ordered blueprints provides an alternative
framework for hyperring schemes that circumvents both problems.

5.8 Ideals

Definition 5.8.1. Let B be an ordered blueprint and α : Bcore→ B be the identity map. A (proper
/ prime / maximal) (m/k-)ideal of B is a subset I of B such that α−1(I) is a (proper / prime /
maximal) (m/k-)ideal of Bcore.



5.9. Localizations 77

Thus the (m/k-)ideals of B are, by definition, the same as the (m/k-)ideals of Bcore. Therefore
all facts for the different types of ideals for algebraic blueprints carry over to ordered blueprints.
For completeness, we list some important facts without proof.

Lemma 5.8.2. Let f : B→C be an ordered blueprint morphism and I a (m/k-)ideal of C. Then
f−1(I) is an (m/k-)ideal of B. If I is prime, then f−1(I) is also prime.

Lemma 5.8.3. Let B be an ordered blueprint. Then every maximal (m/k-)ideal of B is prime.

Monomial ideals

Monomial ideals for ordered blueprints have been defined in [Dud17] as an example of a general
theory that studies possible notions of ideals for algebraic structures. Monomial ideals can be
seen as a generalizes of hyperring ideals to the context of ordered blueprints. See section 5.7 for
details on hyperrings and [Jun18] for the definition of a hyperring ideal.

Definition 5.8.4. Let B be an ordered blueprint. A monomial ideal is an m-ideal of B such that
a 6 ∑B b j with b j ∈ B implies that a ∈ B. A monomial ideal I of B is prime if S = B− I is a
multiplicative subset of B, it is proper if J 6= B and it is maximal if it is proper and if for every
other proper monomial ideal J of B, an inclusion I ⊂ J implies that I = J.

Exercise 5.8.5. Let f : B→C be a morphism of ordered blueprints and I a monomial ideal of C.
Show that f−1(I) is a monomial ideal of B. Show that every maximal monomial ideal of B is
prime. Show that every proper monomial ideal of B is contained in a maximal monomial ideal.

Give an example of an ordered blueprint B, an k-ideal I and a monomial ideal J of B such
that I is not a monomial ideal and such that J is not an ideal of B.

5.9 Localizations

In this section, we define and investigate localizations of ordered blueprints. As a first step, we
verify that the partial order of an ordered blueprint extends to a partial order of the localization
of the ambient semiring.

Lemma 5.9.1. Let (R,6) be an ordered semiring and S a multiplicative subset of R. Then the
relation

r =
{
( x

s ,
y
t )
∣∣wtx6 wsy for some w ∈ S

}

is an additive and multiplicative partial order on S−1R. If x
s =

x′
s′ and y

s =
y′
t ′ , then ( x

s ,
y
t ) ∈ r if

and only if ( x′
s′ ,

y′
t ′ ) ∈ r.

Proof. We begin with the proof of the latter claim. Consider x
s =

x′
s′ and y

s =
y′
t ′ . By the symmetry

of the claimed property, it is enough to prove one implication. Let us assume that ( x
s ,

y
t ) ∈ r. The

hypotheses mean that there are u,v,w ∈ S such that us′x = usx′, vt ′y = vty′ and wtx6 wsy. Thus
we obtain

uvwstt ′x′ = uvws′tt ′x 6 uvwss′t ′y = uvwsts′y′.

Since uvwst ∈ S, this shows that ( x′
s′ ,

y′
t ′ ) ∈ r as claimed.

We turn to the proof of the former claim. The reflectivity of r is obvious. To verify
antisymmetry, assume that ( x

s ,
y
t ) and ( y

t ,
x
s ) are in r, i.e. wtx 6 wsy and w′sy 6 w′tx for some

w,w′ ∈ S. Then ww′tx = ww′sy in R and x
s =

y
t in S−1R, as desired.
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To verify transitivity, assume that ( x
s ,

y
t ) and ( y

t ,
z
u) are in r, i.e. wtx6 wsy and w′uy6 w′tz

for some w,w′ ∈ S. Then ww′tux6 ww′suy6 ww′tsz and ( x
s ,

z
u) is in r as desired.

To verify additivity and multiplicativity, assume that ( x
s ,

y
t ) is in r, i.e. wtx6 wsy for some

w ∈ S. We want to show that for every z
u ∈ S−1R, the pairs ( x

s +
z
u ,

y
t +

z
u) and ( x

s · z
u ,

y
t · z

u) are in
r. Using the additivity and multiplicativity of 6, we see that wu2tx+wustz6 wu2sy+wustz and
wtuxz6 wsuyz, which shows that (ux+sz

su , uy+tz
tu ) and ( xz

su ,
yz
tu) are in r, as desired.

Definition 5.9.2. Let B be an ordered blueprint, S a multiplicative subset of B and r the partial
order on S−1B+ defined in Lemma 5.9.1. The localization of B at S is the ordered blueprint

S−1B =
(
S−1B•,S−1B+,r

)
.

Let h ∈ B and S = {hi}i∈N. The localization of B at h is B[h−1] = S−1B. Let p be a prime m-ideal
of B and S = B−p. The localization of B at p is Bp = S−1Bp. If S = B−{0} is a multiplicative
subset of B, then we define the fraction field of B as FracB = S−1B.

Note that the localization map ι+S : B+→ S−1B+ is a morphism ιS : B→ S−1B of ordered
blueprints that sends a ∈ B to a

1 . We call ιS the localization map of S−1B. Note that

S−1B = S−1B•�〈∑ ai
1 6 ∑

b j
1 | ∑ai 6 ∑b j in B〉,

i.e. we can consider S−1B as a quotient of S−1B•.

Lemma 5.9.3. Let B be an ordered blueprint, S a multiplicative subset of B and ιS : B→ S−1B
the localization map. Let f : B→C be a morphism such that f (S) ⊂C×. Then there exists a
unique morphism fS : S−1B→C such that f = fS ◦ ιS.

Proof. Assuming that fS exists, then it necessarily satisfies fS(
a
s ) = f (s)−1 f (a), which shows

that it is uniquely determined.
We are left with proving the existence of fS. By Exercise 3.6.3, there is a unique morphism

f •S : S−1B•→C• such that f •= ι•S◦ f •S where ι•S : B•→ S−1B• is the localization map. Composing
f •S with the identity map C•→C yields a morphism f̃S : S−1B•→C of ordered blueprints. Since
f : B→C is a morphism, every relation ∑ai 6 ∑b j in B implies a relation ∑ f (ai)6 ∑ f (b j) in
C. Therefore we can apply Proposition 5.3.2 to the quotient map S−1B•→ S−1B, which yields a
morphism fS : S−1B→C with the desired properties.

Example 5.9.4. Let B be an ordered blueprint and B[T ] be the free ordered blueprint over B in
one variable T . We denote by B[T±1] the localization S−1B[T ] = B[T ][T−1] of B at S = {T i}i∈N.

Lemma 5.9.5. Let B be an ordered blueprint, S a multiplicative subset and ιS : B→ S−1B the
localization map. Let I be an (m/k-)ideal of B. Then

S−1I =
{ a

s ∈ S−1B
∣∣a ∈ I,s ∈ S

}

is the (m/k-)ideal of S−1B that is generated by ιS(I).

Proof. Since the (m/k-)ideals of B correspond to the (m/k-)ideals of its algebraic core Bcore, the
claim follows immediately from Lemma 4.8.7.
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Proposition 5.9.6. Let B be an ordered blueprint, S a multiplicative subset of B and ιS : B→
S−1B the localization map. Then the maps

{
prime m-ideals p of B with p∩S = /0

}
←→

{
prime m-ideals of S−1B

}

p
Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections. A prime m-ideal p of B with p∩S = /0 is a (k-)ideal if and only if
S−1p is a (k-)ideal.

Proof. Since the prime (m/k-)ideals of B correspond to the prime (m/k-)ideals of its algebraic
core Bcore, the claim follows immediately from Proposition 4.8.8.

Exercise 5.9.7. Let B be an ordered blueprint, S a multiplicative subset of B and p a prime
m-ideal of B that does not intersect S. Show that p is a monomial ideal of B if and only if S−1p is
a monomial ideal of S−1B.

Residue fields

Let B be an ordered blueprint, p a prime m-ideal of B and S=B−p. Then S−1p is the complement
of the units of S−1B and therefore its unique maximal m-ideal.

Definition 5.9.8. Let B be an ordered blueprint and p a prime m-ideal of B. The residue field at
p is the blueprint k(p) = Bp�c(S−1p) where S is the complement of p in B and c(S−1p) is the
congruence on B+

p that is generated by S−1p.

Let p be a prime m-ideal of a blueprint B. Then the residue field at p comes with a canonical
morphism B→ k(p), which is the composition of the localization map B→ Bp with the quotient
map Bp→ k(p). Note that the residue field k(p) can be the trivial semiring in case that p is not a
k-ideal. More precisely, we have the following.

Corollary 5.9.9. Let B be a blueprint, p a prime m-ideal of B and S = B−p. Then the residue
field k(p) is a blue field if p is a k-ideal and trivial if not.

Proof. This can be proven as the corresponding Corollary 4.8.10 for algebraic blueprints. We
repeat the argument in brevity.

By Proposition 5.9.6, m = S−1p is the unique maximal ideal in Bp and B×p = Bp−m. Let
π : Bp→ k(p) be the quotient map.

By Proposition 4.6.9, kerπ = π−1(0) is a k-ideal of B. Thus we have kerπ = m if p is a
k-ideal and kerπ = Bp if not. In the former case, k(p) is a blue field, in the latter case k(p) = {0},
as claimed.

Exercise 5.9.10. Let B be a nontrivial ordered blueprint. Show that there exists a morphism
B→ k into a blue field k.

Compatibility with reflections and coreflections

Similar to in the case of algebraic blueprints, localizations commute with most constructions
that we have encountered in this chapter. We leave the verification of these compatibilities as an
exercise.
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Exercise 5.9.11. Let B be an ordered blueprint and S a multiplicative subset of B that does not
contain 0. Show that if B is an ordered semiring, an ordered blue field, integral, without zero
divisors, idempotent, cancellative, monomial, totally positive, strictly conic, with unique weak
inverses or reversible, then S−1B is so, too.
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Chapter 6

Valuations

chapter last edited on
May 21, 2018

With the formalism developed in the previous chapter, we are ready to give the general definition
of a valuation, which recovers absolute values, norms, seminorms, Krull valuations and group
characters as special cases. We also explain the relation to valuations in idempotent semirings
and morphisms of hyperrings, and conclude this chapter with some novel examples. Most of the
contents of this chapter stem from [Lor15].

6.1 Definition

Definition 6.1.1. Let B and S be two ordered blueprints. A valuation of B in S is a morphism
v• : B•→ S• between the underlying monoids that admits a morphism ṽ : Bmon→ Spos such that
the diagram

B• S•

Bmon Spos

v•

ṽ

commutes. We write v : B→ S for a valuation v of B in S.

Remark 6.1.2. We collect some first facts about valuations.

(1) Since the canonical morphism S•→ Smon is a bijection, ṽ is uniquely determined by v.
Conversely, v is uniquely determined by ṽ if S→ Spos is a bijection. By Corollary 5.6.20
(5), this holds for strictly conic S, which is the case of most interest for us.

(2) Using Corollary 5.6.10 (3) to characterize the relations of Spos, a valuation is the same as a
map v : B→ S such that

• v(0) = 0 and v(1) = 1;
• v(ab) = v(a)v(b) for all a,b ∈ B;
• if a6 ∑b j in B, then v(a)+∑ck 6 ∑v(b j) for some ck ∈ S.

(3) Every morphism v : B→ S is a valuation since the diagram

B• S•

Bmon B S Spos

v•

ṽ

v

81
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commutes. Conversely, if B is monomial and S totally positive, then every valuation
v : B→ S is a morphism.

(4) From the description in (2), it is apparent that the composition of a valuation v : B→ S
with a morphism f : S→ T of ordered blueprints yields a valuation f ◦ v : B→ T . But in
general, valuations are not closed under composition, cf. Exercise 6.1.3.

Exercise 6.1.3. Show that both the identity map F1[T ]�〈T 6 1+1〉 → F1[T ]�〈T +T 6 1+1〉
and the identity map F1[T ]�〈T + T 6 1+ 1〉 → F1[T ] are valuations, but the composition
F1[T ]�〈T 6 1+1〉 → F1[T ] is not.

6.2 Seminorms

Definition 6.2.1. Let R be a ring. A seminorm on R is a multiplicative map v : R→ R>0 with
v(0) = 0 and v(1) = 1 that satisfies the triangle inequality v(a+b)6 v(a)+v(b) for all a,b ∈ R.
A nonarchimedean seminorm is a monoid morphism that satisfies the strong triangle inequality
v(a+b)6max{v(a),v(b)}.

Lemma 6.2.2. A map v : R→ R>0 is a seminorm if and only if it is a valuation. It is a
nonarchimedean seminorm if and only if the composition R→ R>0→ T of v with the identity
map R>0→ T is a valuation.

Proof. The properties that v(0) = 0, v(1) = 1 and v(ab) = v(a)v(b) for all a and b are common
to semirings and valuations. We have to verify that the conditions on sums agree for both types
of maps.

Assume that v is a seminorm and consider a6 ∑b j in R. Since R is trivially ordered, this
means that a = ∑b j. Since R is a ring, it contains all partial sums of ∑b j and we can use
the triangle inequality recursively to obtain v(a) 6 ∑v(b j) with respect to the natural total
order of R>0. This means that the difference c = ∑v(b j)− v(a) is positive and in R>0 and
v(a)+ c = ∑v(b j) in R>0. Thus v is a valuation.

Assume that v is a valuation and consider c= a+b in R. Then c6 a+b in R and v(c)+∑dl 6
v(a)+ v(b) for some dl ∈ R>0. This shows that v(c)6 v(a)+ v(b) with respect to the natural
total order of R>0 and that v is a seminorm. Thus the former claim of the lemma.

Since the addition of the tropical semiring T is a+b = max{a,b}, the latter claim of the
lemma follows by the same argument as the former claim.

Remark 6.2.3. The nonarchimedean seminorms can be characterized as the following semi-
norms. By the universal property of a monomial blueprint, a morphism Rmon→ Rpos

>0 factorizes
uniquely into Rmon→ (Rpos

>0 )
mon→Rpos

>0 . Using the morphism (Tpos)mon→ (Rpos
>0 )

mon from Exer-
cise 5.6.24, we see that the seminorm v : R→R>0 is nonarchimedean if and only if Rmon→Rpos

>0
factors into

Rmon −→ (Tpos)mon −→ (Rpos
>0 )

mon −→ Rpos
>0 .

6.3 Krull valuations

A partially ordered monoid with zero is an ordered blueprint Γ0 whose algebraic core is a monoid,
i.e. Γ

+
0 = (Γ•0)

+, and whose partial order 6 is generated by relations of the from a 6 b with
a,b ∈ Γ0. Note that Γ•0 together with the restriction of 6 to Γ•0 is indeed a partially ordered
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monoid with zero in the proper sense, which justifies our abuse of language. Often we want that
0 is the smallest element of Γ0 or, in other words, that Γ0 is totally positive.

Proposition 6.3.1. Let Γ0 be a totally positive partially ordered monoid with zero. Then the
following holds true.

(1) The tensor product ΓB = Γ0⊗F1 B is a totally positive blueprint with idempotent algebraic
core Γcore

B = (ΓB)
core.

(2) The canonical morphism ιB : Γ0→ ΓB is bijective and a6 b in Γ0 if and only if ιB(a)6
ιB(b) in ΓB.

(3) The canonical morphism (Γcore
B )pos→ ΓB is an isomorphism.

(4) If Γ0 is totally ordered, then Γcore
B is a bipotent semiring with a+b = max{a,b}.

Proof. Since 06 1 in Γ0, this also holds in ΓB, which shows that ΓB is totally positive. Since
1+1 = 1 in B, this also holds in ΓB, which shows that its algebraic core is idempotent. Thus (1).

Since ΓB = Γ0�〈1+ 1 ≡ 1〉, it is clear that ιB is surjective and that a 6 b in Γ0 implies
ιB(a)6 ιB(b) in ΓB. The injectivity of ιB follows from the fact that ιB(a)6 ιB(b) implies a6 b,
as proven next.

Consider ιB(a)6 ιB(b) in ΓB. Then this relation is derived from the generators of the partial
order of Γ

+
B by using transitivity, additivity and multiplicativity. The generators are of the form

1+1 = 1 and ιB(c)6 ιB(d) where c6 d in Γ0. Each of the generators is a relation of the form
∑ ιB(ck)6 ∑ ιB(dl) with the property that there is an l for every k such that ck 6 dl . Since this
property stable under transitive, additive and multiplicative closures, we conclude that a6 b in
Γ0. Thus (2).

Let a6 b be a relation in Γ0. Then we have b = 0+b6 a+b6 b+b = b in ΓB and a+b= b
in its algebraic core Γcore

B . Using Corollary 5.6.10 (3), we conclude that a6 b in (Γcore
B )pos. Note

that 1+1 = 1 holds in Γcore
B and thus also in (Γcore

B )pos. Since the partial order of ΓB is generated
by relations of the form a 6 b and 1+ 1 = 1, the canonical morphism (Γcore

B )pos → ΓB is an
isomorphism. Thus (3)

If Γ is totally ordered, then for all a and b, the sum a+ b = max{a,b} is defined by the
above argument. Therefore Γcore

B is a bipotent semiring. Thus (4).

Let Γ be a multiplicatively written partially ordered commutative semigroup with unit 1. We
denote by Γ0 the ordered blueprint (Γ∪{0},R) where R is generated by the partial order of Γ

and the relation 06 1. Note that Γ0 is a totally positive ordered monoid with zero.

Definition 6.3.2. Let k be a field and Γ a totally ordered group. A Krull valuation of k with
value group Γ is a map v : k→ Γ0 with v(0) = 0, v(1) = 1, v(ab) = v(a)v(b) and v(a+ b) 6
max{v(a),v(b)} for all a,b ∈ k.

Corollary 6.3.3. A map v : k→ Γ0 is a Krull valuation if and only if the composition

ṽ : kmon −→ k v−→ Γ0
ιB−→ ΓB

is a morphism of ordered blueprints. In other words, the map a 7→ v(a) is a valuation k→ Γcore
B .

Proof. Since kmon→ k and Γ0→ ΓB are bijections, cf. Proposition 6.3.1, v is a monoid morphism
if and only if ṽ is so. Thus we only have to verify the respective properties for sums in the
following.
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Assume that v is a Krull valuation and consider a relation a6 ∑b j in kmon. Then a = ∑b j in
k since k is algebraic. Since v is a valuation and Γ0 is totally ordered, we can use inductively
that v(c+d)6max{v(c),v(d)} to show that a6max{v(b j)} in Γ0. Thus ṽ(a)6∑ ṽ(b j) in ΓB.
This shows that ṽ is a morphism.

Conversely assume that ṽ is a morphism and consider c = a+b in k. Then c6 a+b in kmon

and ṽ(c) 6 ṽ(a)+ ṽ(b) in ΓB. Then ṽ(c) = ιB(v(c)) and ṽ(a)+ ṽ(b) = ιB
(

max{v(a),v(b)}
)
.

By Proposition 6.3.1 (2), we have that v(c) 6max{v(a),v(b)}. This proves that v is a Krull
valuation and completes the proof.

Remark 6.3.4. In the original definition of a Krull valuation, the group Γ is written additively,
the additional element 0 is denoted by ∞ and the triangle inequality is expressed with respect
to the reverse order on Γ, i.e. v(a+b)>min{v(a),v(b)}. Since the group operation of Γ is the
multiplication of the associated semiring ΓB and the additional element is the zero of ΓB, we
allow ourselves to break with precedent and adopt the notation to fit readily into our formalism.

According to Proposition 6.3.1, the concept of a Krull valuation can be generalized by
considering seminorms of R in idempotent semirings S, which correspond to morphisms Rmon→
Spos of ordered blueprints. We will see in a later chapter that the class of idempotent semirings
plays a particular role for tropicalizations. This viewpoint can also be found in Macpherson’s
paper [Mac13].

6.4 Valuations into idempotent semirings

By Corollary 6.3.3, a Krull valuation corresponds to a valuation in an idempotent semiring. It
is a well-known theme to consider the more general class of valuations of rings in idempotent
semirings, which turn out to be particular instances of the more general notion developed in this
chapter; for instance cf. [GG16] and [Mac13]. In this section, we review one particular result for
valuations in idempotent semirings, which is the existence of a universal such valuation.

Let R be a semiring. Let ΓR be the idempotent semiring that consists of all finitely generated
ideals I of R together with the product and sum of ideals. Let 〈a〉 be the principal ideal generated
by a ∈ R. Then 〈0〉 is the zero and that 〈1〉 is the one of ΓR, and we have 〈a〉 · 〈b〉= 〈ab〉 for all
a,b ∈ R. Note that 〈a〉= 〈b〉 if and only if b = ua for a unit u ∈ R×.

We call a valuation v : R→ S into an idempotent semiring S integral if v(a)+1 = 1 for every
a ∈ R. Note that this is the same as v(a)6 1 in Spos, by Exercise 5.1.5.

Lemma 6.4.1. Let R be a semiring. The map v : R→ ΓR that sends an element a of R to
the principal ideal 〈a〉 is an integral valuation. For any integral valuation w : R→ S into an
idempotent blueprint S, there exists a unique semiring morphism w̃ : ΓR→ S such that w = w̃◦ v
as maps.

Proof. We verify all properties for v listed in Remark 6.1.2 (2). It follows from our previous
observations that v(0) = 0, v(1) = 1 and v(ab) = v(a)v(b) for all a,b ∈ R. Given a relation
a 6 ∑b j in R, then a = ∑b j since R is algebraic and thus a is contained in the ideal 〈b j〉
generated by the b j. Therefore we have an equality v(a)+∑v(b j) = 〈a,b j〉= 〈b j〉= ∑v(b j) in
Γ
+
B . This shows that v is a valuation. It is integral since v(a)+1 = 〈a,1〉 = 〈1〉 = 1 for every

a ∈ R.
Given a valuation w : R→ S into an idempotent semiring, the condition w = w̃◦ v prescribes

that w̃(〈ai〉) = ∑w(ai), which implies the uniqueness of w̃. Assuming that w̃ is well-defined, it
is clear from this definition that w̃ is a semiring morphism.
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We verify that the definition of w̃ does not depend on the choice of generators. If I is an
ideal of R that is generated by two different finite subsets, then it is also generated by their union.
Thus we may reduce the proof to the situation that one of the subsets is contained in the other
subset. By joining the elements of the larger subset one by one, we can reduce this subsequently
to the case that the subsets differ by cardinality one. Thus assume that 〈b j〉= 〈a,b j〉 for some
a ∈ 〈b j〉. We need to show that w(a)+∑w(b j) = ∑w(b j) in S.

By Corollary 2.5.4, there are elements x j ∈ R such that a = ∑x jb j. Since w is a valuation, we
have w(a)+∑ck = ∑w(x j)w(b j) for some ck ∈ S; cf. Remark 6.1.2 (2). Since S is idempotent,
we have in fact that

w(a)+∑w(x j)w(b j) = w(a)+w(a)+∑ck = w(a)+∑ck = ∑w(x j)w(b j).

Note that since w is integral, we have w(x j)+1 = 1. Thus adding ∑1 ·w(b j) to both sides of the
displayed equation yields w(a)+∑w(b j) = ∑w(b j), as desired. This completes the proof of the
lemma.

Exercise 6.4.2. Extend Lemma 6.4.1 to ordered blueprints as follows. Let B be an ordered
blueprint. We call a valuation v : B→ S into an idempotent ordered blueprint integral if v(a)+1=
1 for every a ∈ B. Recall from section 5.8 that a monomial ideal of B is an m-ideal I such that
a6 ∑b j with b j ∈ I implies a ∈ I.

Show that for every subset S of B, there exists a unique smallest monomial ideal I containing
S. We call I the monomial ideal generated by S and write I = 〈S〉mon. We say that a monomial
ideal I is principal if it is generated by one element, i.e. I = 〈a〉 for some a ∈ B. We say that I is
finitely generated if it is generated by a finite subset, i.e. I = 〈a1, . . . ,an〉 for some a1, . . . ,an ∈ B.

The product and sum of monomial ideals are defined as the monomial ideals generated by the
pairwise sums and products, respectively, of elements of the ideals. Show that 〈a〉 · 〈b〉= 〈ab〉.
Show that 〈a〉= 〈b〉 if and only if b = ua for some unit b ∈ B×. Conclude that the set A of all
principal monomial ideals of B together with the product of monomial ideals is a monoid with
zero and that the map v• : B•→ A sending a to 〈a〉 is a surjective morphism of monoids with
zero, which identifies B/B× with A.

We define the ordered blueprint

Γ′B = A�〈v•(a)6 ∑v•(b j) |a ∈ 〈b j〉〉.

Show that v• defines an integral valuation v : B→ Γ′B. Show further that for every integral
valuation w : B→ S into an idempotent ordered blueprint S, there is a unique morphism of
ordered blueprints w̃ : Γ′B→ S such that w = w̃◦ v as maps.

6.5 Characters

Definition 6.5.1. Let G be an abelian group and k a field. A character of G in k is a group
homomorphism χ : G→ k×. A unitary character is a character χ : G→ C× whose image is
contained in the unit circle S1.

As in the previous section, we write the group G multiplicatively and define by G0 = G∪{0}
its extension to a monoid with zero where 0 ·a = 0 for all a ∈ G0. The monoid S1 = S1∪{0}
inherits a nontrivial structure of a blueprint from the embedding to C—we define

S1
0,C = S1

0�〈∑ai = ∑b j | ∑ai = ∑b j in C〉.
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Lemma 6.5.2. The maps

{valuations v : G0→ k} −→ {characters χ : G→ k× }
v : G0→ k 7−→ v•|G : G→ k×

and
{valuations v : G0→ S1

0,C } −→ {unitary characters χ : G→ C× }
v : G0→ S1

0,C 7−→ v•|G : G→ C×

are bijections.

Proof. Since k contains an additive inverse −1 of 1, we have kpos = {0}, cf. Corollary 5.6.10
(2). Thus a valuation v : G0→ k is nothing else than a morphism G0→ k• of monoids with zero.

Since every nonzero element of G0 is invertible, we have v(G) ⊂ k×, which shows that
v•|G : G→ k× is well-defined as a map. Conversely, we can extend every character G→ k×

uniquely to a map v : G0→ k with v(0) = 0. It is evident that v : G0→ k is multiplicative if and
only if v•|G : G→ k× is multiplicative. This establishes the first bijection.

Since a unitary character of G is the same as a group homomorphism G→ S1, the same
reasoning establishes the second bijection.

6.6 Nonarchimedean seminorms as hyperring morphisms

An alternative viewpoint to the approach in the previous sections is the interpretation of nonar-
chimedean seminorms as hyperfield morphisms. This interpretation is already implicit in Viro’s
paper [Vir11] about tropical geometry in the language of hyperfields, and was made explicit in
[BB16].

The precise statement is as follows. Let R be a ring and Rhyp the corresponding hyperring
whose hyperaddition is given by a�b = {a+ b}. Let Thyp be the tropical hyperfield whose
hyperaddition is given by a�b = {max{a,b}} if a 6= b and a�a = [0,a]. In the following, we
use the identifications R = Rhyp and R>0 = Thyp as sets.

Proposition 6.6.1. A map v : R→ R>0 is a nonarchimedean seminorm if and only if v : Rhyp→
Thyp is a morphism of hyperrings.

We will reprove this fact in the language of ordered blueprints. The ordered blueprints
associated with Rhyp and Thyp are

(Rhyp)ob = R•�〈c6 a+b |c ∈ a�b〉 and (Thyp)ob = T•�〈c6 a+b |c ∈ a�b〉.
Since (−)ob : HypRings→ OBlpr is a fully faithful embedding, cf. Exercise 5.7.5, we may
identify T hyp with (Thyp)ob to avoid an overcharged notation. Note that (Rhyp)ob = Rmon.

Lemma 6.6.2. We have Thyp�〈1+1≡ 1〉= Tpos. In particular, the identity map is a morphism
Thyp→ Tpos.

Proof. Consider a relation c6 a+b in Thyp. If c = max{a,b} with respect to the natural total
order on T, then c = a+b in T and thus in Tpos. If c6 a = b, then this is the case in Tpos. Thus
the identity map is a morphism Thyp→ Tpos.

Clearly, 1+1 = 1 holds in Thyp. Thus we are left with verifying that every relation of Tpos

holds already in Thyp�〈1+1 = 1〉. To begin with, we have 06 1+1 = 1 in Thyp�〈1+1 = 1〉.
Given an equality a+ b = b in Tpos, then a+ b 6 b+ b = b in Thyp�〈1+ 1 = 1〉. Since the
partial order of Tpos is generated by these two types of relations, this completes the proof of the
lemma.
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Exercise 6.6.3. Let R be a blueprint with inverses and S be a bipotent semiring, i.e. x+y∈ {x,y}
for all x,y ∈ S. Let v : R→ S be a valuation and a ∈ R satisfy an = 1 for some n> 1. Show that
v(a) = 1. In particular, show that v(−1) = 1.

Let v : R→ S be a valuation and a = ∑b j a relation in R. Assume that there is a j such
that v(b j) > v(bi) for all i 6= j. Show that v(a) = v(b j). In particular, we have v(a+ b) =
max{v(a),v(b)} whenever a+b is in R and v(a) 6= v(b).

Since a valuation v : R→ T is nothing else than a morphism ṽ : Rmon → Tpos of ordered
blueprints, cf. Remark 6.1.2 (1), the following lemma recovers Proposition 6.6.1.

Lemma 6.6.4. Let R be a ring. Then every morphism ṽ : Rmon→ Tpos factors into a uniquely
determined morphism ṽhyp : Rmon→ T hyp composed with Thyp→ Tpos.

Proof. The partial order of Rmon is generated by relations of the form c6 a+b. Since ṽ(c)6
ṽ(a) = ṽ(b) holds in Thyp, we are left with the case ṽ(a) 6= ṽ(b). By Exercise 6.6.3, we have
ṽ(a+ b) = max{ṽ(a), ṽ(b)} in this case, which also holds in Thyp. This proves that ṽ factors
through Thyp. The uniqueness of this factorization is clear since Thyp→ Tpos is a bijection.

Exercise 6.6.5. Prove the following generalization of Lemma 6.6.4. Let R be a blueprint with
inverses, S a bipotent semiring and Shyp the associated hyperring from Exercise 5.7.8, considered
as an ordered blueprint. Show that the identity map defines a morphism Shyp→ Spos and that
every morphism ṽ : Rmon→Tpos factors into a uniquely determined ṽhyp : Rmon→ T hyp composed
with Shyp→ Spos.

6.7 More examples of valuations

We present some more examples of valuations in sense of this chapter.

Example 6.7.1. As we have seen in the previous sections, the identity maps T→ R>0 and
Thyp→ T are valuations; cf. Remark 6.2.3 and Lemma 6.6.2, respectively.

Example 6.7.2. The archimedean absolute value v :Q→R>0, which sends x to v(x)= sign(x) ·x,
restricts to a valuation Z→ N and to a valuation F12 → F1. The composition with the unique
morphism F1→ B yields a valuation F12 → B.

Exercise 6.7.3. Show that every nontrivial ordered blueprint B admits a valuation v : B→ B.

Exercise 6.7.4. Let Ngcd be the idempotent semiring whose underlying monoid is N• and whose
addition is given by a+b = gcd(a,b). Show that x6 y in Npos

gcd if y divides x. Show that the map
x 7→ sign(x) · x defines a valuation v : Z→ Ngcd.
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