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List 14 To be sent to xia.xiao@impa.br until 19.5.2020

Choose from the following list 4 exercises that you have not done before, for which you
hand in solutions.

Let G be a group with multiplication m : G x G — G, inversion i : G — G and neutral
element e.

Exercise 1 (Isomorphisms, monomorphisms and epimorphisms).

Let f : G — H be a group homomorphism. Show that f is an isomorphism in Groups (in
the sense of Definition 2.3.1) if and only if f is bijective. Show that f is a monomorphism
if and only if f is injective. Show that f is an epimorphism if and only if f is surjective.

Exercise 2 (Subgroups).

Let H be a subset of G. Show that H is a subgroup of G if and only if e € H,
m(H x H) C H and i{(H) C H. In other words, H is a subgroup if and only if it is a
group with respect to the restrictions of m and i to H.

Exercise 3 (The center).
Show that the center of G

Z(G) = {aeGlab=ba for allbe G}

is a subgroup of G. Show that Z(G) is commutative. Show that every subgroup of
Z(@G) is normal in G. Is every commutative subgroup of G normal?

Exercise 4 (The subgroup generated by a subset).

1. Let {H;}ier be a family of subgroups of G. Show that the intersection (;c; H; is
a subgroup of G.

2. Let S C G be a subset. Show that

ﬂ H = {alagl'--agn_laiﬂnz 1 and ay,...,a, € SU{e}}
H<G with SCH

and conclude that there is a unique smallest subgroup (S) of G that contains S.

Exercise 5 (Orders of elements in commutative groups).
Let G be a commutative group and a,b € G. Show that ord(ab) divides ord(a) - ord(b).
Is this also true if G is not commutative?



Exercise 6 (Cyclic groups and the Klein four-group).
1. Classify all cyclic groups up to isomorphism. Which of them are commutative?

2. Show that a cyclic group of order n has a unique subgroup of order d for each
divisor d of n.

3. Is the Klein four-group V = (Z/27) x (Z/27Z) cyclic? Is it commutative?

Exercise 7 (Dihedral groups).

Let D, be the group of symmetries of a regular polygon with n sides. Show that
D,, = (r,s) where r is a rotation around the center of the polygon by an angle of 27/n
and s is the reflection at a line passing through the center of the polygon and one of
its vertices. What is the number of elements of D,,? Show that D3 ~ S3, and that for
n > 4, the dihedral group D, is not isomorphic to a symmetric group.

Exercise 8 (Symmetric groups).

The symmetric group Sy, is the group of permutations of the numbers 1, ..., n, together
with composition as multiplication, i.e. ¢ -7 = o o 7. An element o of .S, is called a
cycle (of length 1) if ord(c) = [ and if there is an i € {1,...,n} such that o(j) = j if
g & {i,o(i),..., 0" 1(i)}; we write o = (i,0(i),...,0'~1(i)) in this case.

1. Show that (i,...,0'"1(i)) = (4,...,0"71(4)) if j = 0™ (i) for some n > 0.

2. Two cycles ¢ = (i,...,071(i)) and 7 = (j,...,7"71(j)) are called disjoint if
the sets {i,...,0!"1(i)} and {j,...,7*71(j)} are disjoint. Show that ¢ and 7 are
disjoint if and only if o7 = 70.

3. Show that every element of S, can be written as a product of disjoint cycles.

4. A transposition is a cycle (i, j) of length 2. Show that every element of S,, can be
written as a product of transpositions.

Exercise 9 (The sign).
Let o be an element of S,, and 0 = 7,0---07 and 0 = 7, 0--- 07| two representations

of o as a product of transpositions 71,...,7, and 71,...,7,.

1. Show that n —m is even. Conclude that the map sign : S, — {£1} that sends o
to (—1)" is well-defined.

2. Show that sign is a group homomorphism.

Exercise 10 (Theorem of Cayley).

Let G = {ai1,...,a,} be of finite order n. Define the map f : G — S,, that sends q;
to the permutation o; with o;(i) = j such that a;a; = a;. Show that f is an injective
group homomorphism. Conclude that every finite group is isomorphic to a subgroup of
a symmetric group.



Exercise 11 (The alternating group).
The alternating group A,, is defined as the kernel of sign : S,, — {+1}. A group G is
called simple if G # {e} and if the only normal subgroups of G are {e} and G.

1. Show that a cyclic group G of order n is simple if and only if n is a prime number.
2. Show that Ag is simple. Show that A4 is not simple. What about A; and Ay?

3. Show that A, is simple for n > 5.1

Exercise 12 (Quaternion group).
The quaternion group ) consists of the elements {+1, +i, 47, £k}, and the multiplica-
tion is determined by the following rules: 1 is the neutral element, (—1)? = 1 and

==k =-1 (-Di=—i, (“1)j=—j (~Dk=—k ij=k=—ji.
1. Is ) commutative?
2. Describe all subgroups of Q.

3. Which subgroups are normal? What are the respective quotient groups?

Exercise 13.
Classify all groups with 6 elements and all groups with 8 elements up to isomorphism.

Exercise 14 (Transitivity of index).
Let H be a subgroup of G and K a subgroup of H. Show that (G : K) = (G : H)(H : K).

Exercise 15 (Quotients by non-normal subgroups).
Let H be subgroup of G. Show that the association ([a], [b]) — [ab] is not well-defined
on cosets [al,[b] € G/H if H is not normal in G.

Exercise 16 (Alternative characterization of normal subgroups).
A subgroup H of G is normal if and only if gHg~' C H for every g € G.

Exercise 17 (Exercises on normal subgroups).
Show the following statements.

1. Every subgroup of index 2 is normal.

2. Every subgroup of a commutative group is normal. Is there a non-commutative
group G such that every subgroup H of G is normal?

3. The intersection of two normal subgroups is a normal subgroup. If both normal
subgroups have finite index, then their intersection has also finite index.

1 This exercise is more difficult than others, but solutions can be found in the literature.



Exercise 18 (Universal property of the quotient).

Let N be a normal subgroup of G. Show that the quotient map 7 : G — G/N satisfies
the following universal property: for every group homomorphism f : G — H with
f(a) = e for a € N there exists a unique group homomorphism f : G/N — H such that
f = fom,ie. the diagram

commutes.

Exercise 19 (Universal property of the product).
Let {G;}icr be a family of groups and G = [[ G; their product.

1. Show that the map m; : G — G; that sends (g;)ier to g; is a surjective group
homomorphism for every 7 € I. These maps are called the canonical projections.

2. Show that the product together with the canonical projections satisfies the fol-
lowing universal property: for every family of group homomorphisms {f; : H —
Gi}icr, there is a unique group homomorphism f : H — [[ G; such that f; = mjo f
for every j € I, i.e. the diagram

H---—----- Jf ******* I H Gz
O iﬁj
i
Gj
commutes for every j € I.

Exercise 20 (Universal property of the direct sum).
Let {G,}icr be a family of commutative groups and G = @ G; their direct sum.

1. Show that the map ¢; : G; — G that sends g to (g;)jer with g; = g and g; = e; for
j # 1 is an injective group homomorphism for every i € I. These maps are called
the canonical injections.

2. Show that the direct sum together with the canonical injections satisfies the
following universal property: for every family of group homomorphisms {f; :
G; — H}ier of commutative groups, there is a unique group homomorphism
[ @ G; — H such that f; = f o, for every j € I, i.e. the diagram

H

commutes for every j € I.

3. Is the same true if H is a non-commutative group?



Exercise 21 (Some group actions).
Show that the following maps are group actions.

1. S, x{1,....,n} = {1,...,n}, with 0.i = o(7).
2. GL,(R) x R® — R"™, with g.v = ¢ - v (usual matrix multiplication).
3. R* x R™ — R", with a.v = a - v (scalar multiplication).

4. The permutation of the vertices of a regular n-gon by elements of the dihedral
group D,,.

Exercise 22 (Center and centralizer).
Consider the action of G on itself by conjugation.

1. Show that

{re@|O@) ={z}} = {aGG‘ab:baforalleG}.

2. Show that Cg(z) = {a € G | ax = za}.

3. Show that
Z(G) = () Calw).

zeG

Exercise 23 (Normalizer).

Let H be a subgroup of G. Show that its normalizer Normg(H) is the largest subgroup
of G containing H such that H is a normal subgroup of Normg(H ). Show further that
the following properties are equivalent:

1. H is normal in G;
2. Normg(H) = G,

3. H is a fixed point for the action of G on the set of all subgroups of G by conju-
gation.

Exercise 24 (Short exact sequences).
A short exact sequence of groups is a sequence

ey I N e B g s e
of groups and group homomorphism such that imf; = ker f;41 for ¢ = 1,2, 3.

1. Show that imf; = ker f;41 for ¢ = 1,2,3 holds if and only if f> is injective, if
imfy = ker f3 and if f3 is surjective.

2. Show that N is isomorphic to N/ = imf;, that N’ is a normal subgroup of G' and
that G/N’ ~ @ in case of a short exact sequence.



Exercise 25.
Calculate all orbits and stabilizers for the action of Dy on itself by conjugation.

Exercise 26 (Commutator subgroup).

The commutator of two elements a,b € G is [a,b] = aba='b~!. The commutator sub-
group of G is the subgroup [G, G| generated by the commutators [a,b] of all pairs of
elements a and b of G.

1. Show that [a,b] = e if and only if ab = ba. Conclude that [G, G] = {e} if and only
if G'is commutative.

2. Show that c[a, blc™! = [cac™!, cbc™!] and conclude that [G, G] is a normal subgroup
of G.

3. Show that the quotient group G** = G/[G, G] is commutative.

4. Show that G together with the projection 7 : G — G2 satisfies the following
universal property: for every group homomorphism f : G — H into a commutative
group H, there exists a unique group homomorphism f2° : G®» — H such that

f=f®onm:

G L
o o

ﬂ-l ”,»”’/fab

Gab -

Exercise 27.
Determine all p-Sylow subgroups of Sy for p € {2,3}.

Exercise 28.

Let ord(G) = 6 and n,, the number of p-Sylow subgroups of G. Find all possibilities for
ng and ng, using the Sylow theorems. Find examples of groups with 6 elements that
realize these possibilities.

Exercise 29.
Let ord(G) = pq for prime numbers p and g. Show that G is not simple.

Hint: If p = q, then use the class equation. If p # ¢, then use the Sylow theorems.



